Example #1
0
 def test_f1_two_class(self):
     """Test F1-score for two class
     """
     correct = np.array([[False], [True], [False]])
     conf = np.array([0.654, 0.702, 0.432])
     pred_cls = np.array([0., 0., 1.])
     target_cls = np.array([1. , 0., 0.])
     _, _, _, f1, _ = ap_per_class(correct, conf, pred_cls, target_cls)
     expect = np.array([[0.5], [0.]])
     self.assertTrue((f1 == expect).all())
Example #2
0
 def test_f1_single_class(self):
     """Test F1-score for single class
     """
     correct = np.array([[True], [True]])
     conf = np.array([0.685, 0.702])
     pred_cls = np.array([0., 0.])
     target_cls = np.array([0., 0.])
     _, _, _, f1, _ = ap_per_class(correct, conf, pred_cls, target_cls)
     expect = np.array([[1.]])
     self.assertTrue((f1 == expect).all())
Example #3
0
 def test_ap_two_class(self):
     """Test average precision for two class
     """
     correct = np.array([[False], [True], [False]])
     conf = np.array([0.654, 0.702, 0.432])
     pred_cls = np.array([0., 0., 1.])
     target_cls = np.array([1. , 0., 0.])
     _, _, ap, _, _ = ap_per_class(correct, conf, pred_cls, target_cls)
     expect = np.array([[0.5], [0.]])
     self.assertTrue((ap == expect).all())
Example #4
0
 def test_ap_single_class(self):
     """Test average precision for single class
     """
     correct = np.array([[True], [True]])
     conf = np.array([0.685, 0.702])
     pred_cls = np.array([0., 0.])
     target_cls = np.array([0., 0.])
     _, _, ap, _, _ = ap_per_class(correct, conf, pred_cls, target_cls)
     expect = np.array([[0.995]])
     self.assertTrue((ap == expect).all())
Example #5
0
 def test_precision_recall_three_class(self):
     """Test precision and recall for three class
     """
     correct = np.array([[False], [True], [False]])
     conf = np.array([0.654, 0.702, 0.432])
     pred_cls = np.array([0., 2., 1.])
     target_cls = np.array([1. , 2., 0.])
     p, r, _, _, _ = ap_per_class(correct, conf, pred_cls, target_cls)
     expect_p = np.array([[0.], [0.], [1.]])
     expect_r = np.array([[0.], [0.], [1.]])
     self.assertTrue((p == expect_p).all() and (r == expect_r).all())
Example #6
0
 def test_precision_recall_single_class(self):
     """Test precision and recall for single class
     """
     correct = np.array([[True], [True]])
     conf = np.array([0.685, 0.702])
     pred_cls = np.array([0., 0.])
     target_cls = np.array([0., 0.])
     p, r, _, _, _ = ap_per_class(correct, conf, pred_cls, target_cls)
     output = np.concatenate([p, r])
     expect = np.array([[1.], [1.]])
     self.assertTrue((output == expect).all())
Example #7
0
def test(
        cfg,
        data,
        weights=None,
        batch_size=16,
        imgsz=416,
        conf_thres=0.1,
        iou_thres=0.6,  # for nms
        single_cls=False,
        augment=False,
        model=None,
        dataloader=None,
        multi_label=True):
    # Initialize/load model and set device
    if model is None:
        is_training = False
        device = select_device(opt.device, batch_size=batch_size)
        verbose = opt.task == 'test'

        # Remove previous
        for f in glob.glob('test_batch*.jpg'):
            os.remove(f)

        # Initialize model
        model = Darknet(cfg, imgsz)

        # Load weights
        attempt_download(weights)
        if weights.endswith('.pt'):  # pytorch format
            model.load_state_dict(
                torch.load(weights, map_location=device)['model'])
        else:  # darknet format
            load_darknet_weights(model, weights)

        # Fuse
        model.fuse()
        model.to(device)

        if device.type != 'cpu' and torch.cuda.device_count() > 1:
            model = nn.DataParallel(model)
    else:  # called by train.py
        is_training = True
        device = next(model.parameters()).device  # get model device
        verbose = False

    # Configure run
    data = parse_data_cfg(data)
    nc = 1 if single_cls else int(data['classes'])  # number of classes
    path = data['valid']  # path to test images
    names = load_classes(data['names'])  # class names
    iouv = torch.linspace(0.5, 0.95,
                          10).to(device)  # iou vector for [email protected]:0.95
    iouv = iouv[0].view(1)  # comment for [email protected]:0.95
    niou = iouv.numel()

    # Dataloader
    if dataloader is None:
        dataset = LoadImagesAndLabels(path,
                                      imgsz,
                                      batch_size,
                                      rect=True,
                                      single_cls=opt.single_cls,
                                      pad=0.5)
        batch_size = min(batch_size, len(dataset))
        dataloader = DataLoader(dataset,
                                batch_size=batch_size,
                                num_workers=min([
                                    os.cpu_count(),
                                    batch_size if batch_size > 1 else 0, 8
                                ]),
                                pin_memory=True,
                                collate_fn=dataset.collate_fn)

    seen = 0
    model.eval()
    _ = model(torch.zeros(
        (1, 3, imgsz,
         imgsz), device=device)) if device.type != 'cpu' else None  # run once
    s = ('%20s' + '%10s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R',
                                 '[email protected]', 'F1')
    p, r, f1, mp, mr, map, mf1, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    for batch_i, (imgs, targets, paths,
                  shapes) in enumerate(tqdm(dataloader, desc=s)):
        imgs = imgs.to(
            device).float() / 255.0  # uint8 to float32, 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = imgs.shape  # batch size, channels, height, width
        whwh = torch.Tensor([width, height, width, height]).to(device)

        # Disable gradients
        with torch.no_grad():
            # Run model
            t = time_synchronized()
            inf_out, train_out = model(
                imgs, augment=augment)  # inference and training outputs
            t0 += time_synchronized() - t

            # Compute loss
            if is_training:  # if model has loss hyperparameters
                loss += compute_loss(train_out, targets,
                                     model)[1][:3]  # GIoU, obj, cls

            # Run NMS
            t = time_synchronized()
            output = non_max_suppression(inf_out,
                                         conf_thres=conf_thres,
                                         iou_thres=iou_thres,
                                         multi_label=multi_label)
            t1 += time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(output):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            seen += 1

            if pred is None:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                  torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Append to text file
            # with open('test.txt', 'a') as file:
            #    [file.write('%11.5g' * 7 % tuple(x) + '\n') for x in pred]

            # Clip boxes to image bounds
            clip_coords(pred, (height, width))

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0],
                                  niou,
                                  dtype=torch.bool,
                                  device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5]) * whwh

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(
                        -1)  # target indices
                    pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(
                        -1)  # prediction indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(pred[pi, :4], tbox[ti]).max(
                            1)  # best ious, indices

                        # Append detections
                        for j in (ious > iouv[0]).nonzero(as_tuple=False):
                            d = ti[i[j]]  # detected target
                            if d not in detected:
                                detected.append(d)
                                correct[
                                    pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(
                                        detected
                                ) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append(
                (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        if batch_i < 1:
            f = 'test_batch%g_gt.jpg' % batch_i  # filename
            plot_images(imgs, targets, paths=paths, names=names,
                        fname=f)  # ground truth
            f = 'test_batch%g_pred.jpg' % batch_i
            plot_images(imgs,
                        output_to_target(output, width, height),
                        paths=paths,
                        names=names,
                        fname=f)  # predictions

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy

    # Visualize probability of predictions
    # probs = np.array(stats[1])
    # import seaborn as sns
    # plot = sns.distplot(probs, bins=probs.shape[0] // 3)
    # plot.figure.savefig("prob_%s.png" % imgsz)

    if len(stats):
        p, r, ap, f1, ap_class = ap_per_class(*stats)
        if niou > 1:
            p, r, ap, f1 = p[:, 0], r[:, 0], ap.mean(
                1), ap[:, 0]  # [P, R, [email protected]:0.95, [email protected]]
        mp, mr, map, mf1 = p.mean(), r.mean(), ap.mean(), f1.mean()
        nt = np.bincount(stats[3].astype(np.int64),
                         minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%10.3g' * 6  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map, mf1))

    # Print results per class
    if verbose and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap[i], f1[i]))

    # Print speeds
    if verbose:
        t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (
            imgsz, imgsz, batch_size)  # tuple
        print(
            'Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g'
            % t)

    # Return results
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map, mf1, *(loss.cpu() / len(dataloader)).tolist()), maps