model.add(layers.Dropout(0.5)) model.add( layers.Dense(128, kernel_regularizer=regularizers.l1_l2(l1=0.0001, l2=0.0001), activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1, activation='sigmoid')) model.summary() # COMPILATION opt = keras.optimizers.Adadelta() model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy']) # FIT history = model.fit(x_train, y_train, epochs=100, validation_split=0.25, class_weight={ 0: 1, 1: 2 }, batch_size=80, shuffle=True) # PLOT ACCURACY/VALIDATION CURVES plot_model(model, to_file='t2_model.png', show_shapes=True) training_plots.plot_metrics(history, 'T2')
model.add(layers.Dropout(0.5)) model.add(layers.Dense(256, activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(128, kernel_regularizer = regularizers.l1_l2(l1=0.0001, l2=0.0001), activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1, activation='sigmoid')) model.summary() # COMPILATION opt = tensorflow.keras.optimizers.Adadelta() model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy']) # ask Keras to save best weights (in terms of validation loss) into file: model_checkpoint = ModelCheckpoint(filepath='weights_ktrans_base.hdf5', monitor='val_loss', save_best_only=True) # ask Keras to log each epoch loss: csv_logger = CSVLogger('ktrans_log.csv', append=True, separator=';') # ask Keras to log info in TensorBoard format: tensorboard = TensorBoard(log_dir='ktrans_base/', write_graph=True, write_images=True) # FIT history = model.fit(x_train, y_train, epochs=100, validation_split=0.25, class_weight={0:1, 1:2}, batch_size=80, shuffle=True) # PLOT ACCURACY/VALIDATION CURVES plot_model(model, to_file='ktrans_model.png', show_shapes = True) training_plots.plot_metrics(history, 'KTRANS')
model.add(layers.Dropout(0.5)) model.add( layers.Dense(128, kernel_regularizer=regularizers.l1_l2(l1=0.0001, l2=0.0001), activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1, activation='sigmoid')) model.summary() # COMPILATION opt = keras.optimizers.Adadelta() model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy']) # FIT history = model.fit(x_train, y_train, epochs=100, validation_split=0.25, class_weight={ 0: 1, 1: 2 }, batch_size=80, shuffle=True) # PLOT ACCURACY/VALIDATION CURVES plot_model(model, to_file='bval_model.png', show_shapes=True) training_plots.plot_metrics(history, 'BVAL')
model.add(layers.Dropout(0.5)) model.add( layers.Dense(128, kernel_regularizer=regularizers.l1_l2(l1=0.0001, l2=0.0001), activation='relu')) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1, activation='sigmoid')) model.summary() # COMPILATION opt = keras.optimizers.Adadelta() model.compile(optimizer=opt, loss='binary_crossentropy', metrics=['accuracy']) # FIT history = model.fit(x_train, y_train, epochs=100, validation_split=0.25, class_weight={ 0: 1, 1: 2 }, batch_size=80, shuffle=True) # PLOT ACCURACY/VALIDATION CURVES plot_model(model, to_file='adc_model.png', show_shapes=True) training_plots.plot_metrics(history, 'ADC')