import numpy as np import os import wget from sklearn.model_selection import train_test_split import tensorflow as tf from training_utils import download_file, get_batches, read_and_decode_single_example, load_validation_data, \ download_data, evaluate_model, get_training_data import argparse from tensorboard import summary as summary_lib dataset = 5 # download the data download_data(what=dataset) # ## Create Model # config # If number of epochs has been passed in use that, otherwise default to 50 parser = argparse.ArgumentParser() parser.add_argument("-e", "--epochs", help="number of epochs to train", type=int) args = parser.parse_args() if args.epochs: epochs = args.epochs else: epochs = 50 batch_size = 64 train_files, total_records = get_training_data(what=dataset)
import numpy as np import os import wget from sklearn.model_selection import train_test_split import tensorflow as tf from training_utils import download_file, get_batches, read_and_decode_single_example, load_validation_data, \ download_data, evaluate_model, get_training_data import argparse from tensorboard import summary as summary_lib # download the data download_data() # ## Create Model # config # If number of epochs has been passed in use that, otherwise default to 50 parser = argparse.ArgumentParser() parser.add_argument("-e", "--epochs", help="number of epochs to train", type=int) args = parser.parse_args() if args.epochs: epochs = args.epochs else: epochs = 50 batch_size = 64 train_files, total_records = get_training_data(type="new") ## Hyperparameters # Small epsilon value for the BN transform
import numpy as np import os import wget from sklearn.cross_validation import train_test_split import tensorflow as tf from training_utils import download_file, get_batches, read_and_decode_single_example, load_validation_data, \ download_data, evaluate_model, get_training_data import sys import argparse from tensorboard import summary as summary_lib # download the data download_data(what="old") # ## Create Model ## config # If number of epochs has been passed in use that, otherwise default to 50 parser = argparse.ArgumentParser() parser.add_argument("-e", "--epochs", help="number of epochs to train", type=int) args = parser.parse_args() if args.epochs: epochs = args.epochs else: epochs = 50 batch_size = 64
import numpy as np import os import wget from sklearn.model_selection import train_test_split import tensorflow as tf from training_utils import download_file, get_batches, read_and_decode_single_example, load_validation_data, \ download_data, evaluate_model, get_training_data import sys import argparse from tensorboard import summary as summary_lib # download the data download_data(what=5) # ## Create Model ## config # If number of epochs has been passed in use that, otherwise default to 50 parser = argparse.ArgumentParser() parser.add_argument("-e", "--epochs", help="number of epochs to train", type=int) args = parser.parse_args() if args.epochs: epochs = args.epochs else: epochs = 50 batch_size = 64
import numpy as np import os import wget from sklearn.model_selection import train_test_split import tensorflow as tf from training_utils import download_file, get_batches, read_and_decode_single_example, load_validation_data, \ download_data, evaluate_model, get_training_data, _conv2d_batch_norm, _dense_batch_norm import argparse from tensorboard import summary as summary_lib # download the data download_data(what=6) ## config # If number of epochs has been passed in use that, otherwise default to 50 parser = argparse.ArgumentParser() parser.add_argument("-e", "--epochs", help="number of epochs to train", type=int) args = parser.parse_args() if args.epochs: epochs = args.epochs else: epochs = 50 # set the batch size batch_size = 64 train_files, total_records = get_training_data(what=6)