filter_name = raw_input('Filter name (return for none): ') if filter_name == '': filter_name = None group = raw_input('Group name (return for none): ') if group == '': group = 'Image' results_table = raw_input('Results table name (return for none): ') logging.info('Loading properties file...') p = Properties.getInstance() p.LoadFile(props_file) logging.info('Loading training set...') ts = TrainingSet(p) ts.Load(ts_file) score(p, ts, nRules, filter_name, group, show_results=True, results_table=results_table, overwrite=False) app.MainLoop() # # Kill the Java VM
db = DBConnect.getInstance() dm = DataModel.getInstance() # props = '/Volumes/imaging_analysis/2007_10_19_Gilliland_LeukemiaScreens/Screen3_1Apr09_run3/2007_10_19_Gilliland_LeukemiaScreens_Validation_v2_AllBatches_DuplicatesFiltered_FullBarcode_testSinglePlate.properties' # ts = '/Volumes/imaging_analysis/2007_10_19_Gilliland_LeukemiaScreens/Screen3_1Apr09_run3/trainingvalidation3b.txt' props = '../Properties/nirht_area_test.properties' ts = '/Users/afraser/Desktop/MyTrainingSet3.txt' nRules = 5 filter = 'MAPs' # props = '/Users/afraser/Desktop/2007_10_19_Gilliland_LeukemiaScreens_Validation_v2_AllBatches_DuplicatesFiltered_FullBarcode.properties' # ts = '/Users/afraser/Desktop/trainingvalidation3d.txt' # nRules = 50 # filter = 'afraser_test' p.LoadFile(props) trainingSet = TrainingSet(p) trainingSet.Load(ts) output = StringIO() print('Training classifier with ' + str(nRules) + ' rules...') weaklearners = fastgentleboostingmulticlass.train(trainingSet.colnames, nRules, trainingSet.label_matrix, trainingSet.values, output) table = PerImageCounts(weaklearners, filter_name=filter) table.sort() labels = ['table', 'image'] + list(trainingSet.labels) + list( trainingSet.labels) print(labels) for row in table:
import glob, os from PIL import Image from trainingset import TrainingSet # Declare directories png_directory = "/Users/jessetvogel/Downloads/mnist_png" nnts_directory = "/Users/jessetvogel/Desktop/data" # Scan directories for subdirectory in ["training", "testing"]: print "Scanning " + subdirectory + " directory ..." training_set = TrainingSet(1, 1, 0.0, 1.0, 0.0, 1.0, 28 * 28, 10) for i in range(10): print "Scanning for digit " + str(i) n = 0 directory = png_directory + "/" + subdirectory + "/" + str(i) for file in os.listdir(directory): if file.endswith(".png"): img = Image.open(directory + "/" + file) output = [0.0] * 10 output[i] = 1.0 training_set.add_sample([x / 255.0 for x in list(img.getdata())], output) img.close() n += 1 if n == 25: break print "Read " + str(n) + " images" print "Saving " + subdirectory + " ..." training_set.save(nnts_directory + "/" + subdirectory + ".nnts") print ""
## #group = raw_input('Group name (return for none): ') #if group=='': #group = 'Image' group = 'None' ## #results_table = raw_input('Results table name (return for none): ') results_table = '' logging.info('Loading properties file...') p = Properties.getInstance() p.LoadFile(props_file) logging.info('Loading initial training set...') ts = TrainingSet(p) ts.Load(ts_file) logging.info('Loading ground truth training set...') gt = TrainingSet(p) gt.Load(gt_file) score_objects(p, ts, gt, nRules, filter_name, group, show_results=True, results_table=results_table, overwrite=False)
from trainingset import TrainingSet path = "tmp_file.nnts" # Create training set tset = TrainingSet(1, 1, 0.0, 1.0, 0.0, 1.0, 2, 1) tset.add_sample([0.0, 0.0], [0.0]) tset.add_sample([0.0, 1.0], [1.0]) tset.add_sample([1.0, 0.0], [1.0]) tset.add_sample([1.0, 1.0], [0.0]) # Write training set tset.save(path) # # Clean up # import os # os.remove(path)