Example #1
0
def run_task(vv):
    set_gpu_mode(vv['gpu'])
    env_name = vv['env_name']
    env = make_env(env_name,
                   1,
                   0,
                   '/tmp/gym',
                   kwargs=dict(border=vv['block_config'][2]))
    obs_dim = int(env().observation_space.shape[0])
    action_dim = int(env().action_space.n)

    path_len = vv['path_len']
    data_path = None
    # True so that behavioral cloning has access to actions
    use_actions = True

    #create a dummy datset since we initialize with no data
    dummy = np.zeros((1, path_len + 1, obs_dim + action_dim))
    train_data, test_data = dummy, dummy

    train_dataset = PlayPenContDataset(data_path=data_path,
                                       raw_data=train_data,
                                       obs_dim=obs_dim,
                                       action_dim=action_dim,
                                       path_len=path_len,
                                       env_id='Playpen',
                                       normalize=False,
                                       use_actions=use_actions,
                                       batch_size=vv['batch_size'],
                                       buffer_size=vv['buffer_size'])
    #validation set for vae training
    test_dataset = PlayPenContDataset(data_path=data_path,
                                      raw_data=train_data,
                                      obs_dim=obs_dim,
                                      action_dim=action_dim,
                                      path_len=path_len,
                                      env_id='Playpen',
                                      normalize=False,
                                      use_actions=use_actions,
                                      batch_size=vv['batch_size'] // 9,
                                      buffer_size=vv['buffer_size'] // 9)

    #this holds the data from the latest iteration for joint training
    dummy_dataset = PlayPenContDataset(data_path=data_path,
                                       raw_data=train_data,
                                       obs_dim=obs_dim,
                                       action_dim=action_dim,
                                       path_len=path_len,
                                       env_id='Playpen',
                                       normalize=False,
                                       use_actions=use_actions,
                                       batch_size=vv['batch_size'],
                                       buffer_size=vv['buffer_size'])

    train_dataset.clear()
    test_dataset.clear()
    dummy_dataset.clear()

    latent_dim = vv['latent_dim']
    rnn_hidden_dim = vv['decoder_rnn_hidden_dim']

    step_dim = obs_dim

    # build encoder
    if vv['encoder_type'] == 'mlp':
        encoder = GaussianNetwork(mean_network=MLP(
            (path_len + 1) * step_dim,
            latent_dim,
            hidden_sizes=vv['encoder_hidden_sizes'],
            hidden_act=nn.ReLU),
                                  log_var_network=MLP(
                                      (path_len + 1) * step_dim, latent_dim))
    elif vv['encoder_type'] == 'lstm':
        encoder = GaussianBidirectionalNetwork(
            input_dim=step_dim,
            hidden_dim=rnn_hidden_dim,
            num_layers=2,
            mean_network=MLP(2 * rnn_hidden_dim, latent_dim),
            log_var_network=MLP(2 * rnn_hidden_dim, latent_dim))

    # build state decoder
    if vv['decoder_var_type'] == 'param':
        decoder_log_var_network = Parameter(latent_dim,
                                            step_dim,
                                            init=np.log(0.1))
    else:
        decoder_log_var_network = MLP(rnn_hidden_dim, step_dim)
    if vv['decoder_type'] == 'grnn':
        decoder = GaussianRecurrentNetwork(
            recurrent_network=RNN(
                nn.LSTM(step_dim + latent_dim, rnn_hidden_dim),
                rnn_hidden_dim),
            mean_network=MLP(rnn_hidden_dim,
                             step_dim,
                             hidden_sizes=vv['decoder_hidden_sizes'],
                             hidden_act=nn.ReLU),
            #log_var_network=Parameter(latent_dim, step_dim, init=np.log(0.1)),
            log_var_network=decoder_log_var_network,
            path_len=path_len,
            output_dim=step_dim,
            min_var=1e-4,
        )
    elif vv['decoder_type'] == 'gmlp':
        decoder = GaussianNetwork(
            mean_network=MLP(latent_dim,
                             path_len * step_dim,
                             hidden_sizes=vv['decoder_hidden_sizes'],
                             hidden_act=nn.ReLU),
            log_var_network=Parameter(latent_dim,
                                      path_len * step_dim,
                                      init=np.log(0.1)),
            min_var=1e-4)
    elif vv['decoder_type'] == 'mixedrnn':
        gauss_output_dim = 10
        cat_output_dim = 5
        decoder = MixedRecurrentNetwork(
            recurrent_network=RNN(
                nn.LSTM(step_dim + latent_dim, rnn_hidden_dim),
                rnn_hidden_dim),
            mean_network=MLP(rnn_hidden_dim,
                             gauss_output_dim,
                             hidden_sizes=vv['decoder_hidden_sizes'],
                             hidden_act=nn.ReLU),
            prob_network=MLP(rnn_hidden_dim,
                             cat_output_dim,
                             final_act=nn.Softmax),
            log_var_network=Parameter(latent_dim,
                                      gauss_output_dim,
                                      init=np.log(0.1)),
            path_len=path_len,
            output_dim=step_dim,
            min_var=1e-4,
            gaussian_output_dim=gauss_output_dim,
            cat_output_dim=cat_output_dim)

    # policy decoder
    policy = CategoricalNetwork(prob_network=MLP(obs_dim + latent_dim,
                                                 action_dim,
                                                 hidden_sizes=(400, 300, 200),
                                                 hidden_act=nn.ReLU,
                                                 final_act=nn.Softmax),
                                output_dim=action_dim)

    # explorer policy
    policy_ex = CategoricalNetwork(prob_network=MLP(obs_dim,
                                                    action_dim,
                                                    hidden_sizes=(400, 300,
                                                                  200),
                                                    hidden_act=nn.ReLU,
                                                    final_act=nn.Softmax),
                                   output_dim=action_dim)

    # vae with behavioral cloning
    vae = TrajVAEBC(encoder=encoder,
                    decoder=decoder,
                    latent_dim=latent_dim,
                    step_dim=step_dim,
                    feature_dim=train_dataset.obs_dim,
                    env=env,
                    path_len=train_dataset.path_len,
                    init_kl_weight=vv['kl_weight'],
                    max_kl_weight=vv['kl_weight'],
                    kl_mul=1.03,
                    loss_type=vv['vae_loss_type'],
                    lr=vv['vae_lr'],
                    obs_dim=obs_dim,
                    act_dim=action_dim,
                    policy=policy,
                    bc_weight=vv['bc_weight'])

    # 0 baseline due to constantly changing rewards
    baseline = ZeroBaseline()
    # policy opt for policy decoder
    policy_algo = PPO(
        env,
        env_name,
        policy,
        baseline=baseline,
        obs_dim=obs_dim,
        action_dim=action_dim,
        max_path_length=path_len,
        center_adv=True,
        optimizer=optim.Adam(policy.get_params(), vv['policy_lr'],
                             eps=1e-5),  #vv['global_lr']),
        use_gae=vv['use_gae'],
        epoch=10,
        ppo_batch_size=200)

    # baseline for the explorer
    baseline_ex = ZeroBaseline()
    # policy opt for the explorer
    policy_ex_algo = PPO(
        env,
        env_name,
        policy_ex,
        baseline=baseline_ex,
        obs_dim=obs_dim,
        action_dim=action_dim,
        max_path_length=path_len,
        center_adv=True,
        optimizer=optim.Adam(policy_ex.get_params(), vv['policy_lr'],
                             eps=1e-5),  #vv['global_lr']),
        use_gae=vv['use_gae'],
        epoch=10,
        ppo_batch_size=200,
        entropy_bonus=vv['entropy_bonus'])

    # for loading the model from a saved state
    if vv['load_models_dir'] is not None:
        dir = getcwd(
        ) + "/research/lang/traj2vecv3_jd/" + vv['load_models_dir']
        itr = vv['load_models_idx']
        encoder.load_state_dict(torch.load(dir + '/encoder_%d.pkl' % itr))
        decoder.load_state_dict(torch.load(dir + '/decoder_%d.pkl' % itr))
        policy.load_state_dict(torch.load(dir + '/policy_%d.pkl' % itr))
        policy_ex.load_state_dict(torch.load(dir + '/policy_ex_%d.pkl' % itr))
        vae.optimizer.load_state_dict(
            torch.load(dir + '/vae_optimizer_%d.pkl' % itr))
        policy_algo.optimizer.load_state_dict(
            torch.load(dir + '/policy_optimizer_%d.pkl' % itr))

    # block goals
    goals = 2 * np.array(vv['block_config'][1])
    # reward function for MPC
    rf = lambda obs, rstate: reward_fn(obs, rstate, goals)

    # main algorithm launcher, includes mpc controller and exploration
    vaepd = VAEPDEntropy(
        env,
        env_name,
        policy,
        policy_ex,
        encoder,
        decoder,
        path_len,
        obs_dim,
        action_dim,
        step_dim,
        policy_algo,
        policy_ex_algo,
        train_dataset,
        latent_dim,
        vae,
        batch_size=400,
        block_config=vv['block_config'],
        plan_horizon=vv['mpc_plan'],
        max_horizon=vv['mpc_max'],
        mpc_batch=vv['mpc_batch'],
        rand_per_mpc_step=vv['mpc_explore_step'],
        mpc_explore=2048,
        mpc_explore_batch=6,
        reset_ent=vv['reset_ent'],
        vae_train_steps=vv['vae_train_steps'],
        mpc_explore_len=vv['mpc_explore_len'],
        consis_finetuning=vv['consis_finetuning'],
        true_reward_scale=vv['true_reward_scale'],
        discount_factor=vv['discount_factor'],
        reward_fn=(rf, init_rstate),
    )

    vaepd.train(train_dataset,
                test_dataset=test_dataset,
                dummy_dataset=dummy_dataset,
                plot_step=10,
                max_itr=vv['max_itr'],
                record_stats=True,
                print_step=1000,
                save_step=20,
                start_itr=0,
                train_vae_after_add=vv['train_vae_after_add'],
                joint_training=vv['joint_training'])
Example #2
0
def run_task(vv):
    set_gpu_mode(vv['gpu'])
    env_name = None

    goals = np.array(vv['goals'])
    env = lambda: SwimmerEnv(
        vv['frame_skip'], goals=goals, include_rstate=False)

    obs_dim = int(env().observation_space.shape[0])
    action_dim = int(env().action_space.shape[0])
    vv['block_config'] = [env().reset().tolist(), vv['goals']]
    print(vv['block_config'])

    path_len = vv['path_len']
    data_path = vv['initial_data_path']
    use_actions = vv['use_actions']

    dummy = np.zeros((1, path_len + 1, obs_dim + action_dim))
    train_data, test_data = dummy, dummy
    train_dataset = WheeledContDataset(data_path=data_path,
                                       raw_data=train_data,
                                       obs_dim=obs_dim,
                                       action_dim=action_dim,
                                       path_len=path_len,
                                       env_id='Playpen',
                                       normalize=False,
                                       use_actions=use_actions,
                                       batch_size=vv['batch_size'],
                                       buffer_size=vv['buffer_size'],
                                       pltidx=[-2, -1])

    test_dataset = WheeledContDataset(data_path=data_path,
                                      raw_data=train_data,
                                      obs_dim=obs_dim,
                                      action_dim=action_dim,
                                      path_len=path_len,
                                      env_id='Playpen',
                                      normalize=False,
                                      use_actions=use_actions,
                                      batch_size=vv['batch_size'] // 9,
                                      buffer_size=vv['buffer_size'] // 9,
                                      pltidx=[-2, -1])
    dummy_dataset = WheeledContDataset(data_path=data_path,
                                       raw_data=train_data,
                                       obs_dim=obs_dim,
                                       action_dim=action_dim,
                                       path_len=path_len,
                                       env_id='Playpen',
                                       normalize=False,
                                       use_actions=use_actions,
                                       batch_size=vv['batch_size'],
                                       buffer_size=vv['buffer_size'],
                                       pltidx=[-2, -1])

    train_dataset.clear()
    test_dataset.clear()
    dummy_dataset.clear()

    latent_dim = vv['latent_dim']
    policy_rnn_hidden_dim = vv['policy_rnn_hidden_dim']
    rnn_hidden_dim = vv['decoder_rnn_hidden_dim']

    step_dim = obs_dim
    rnn_hidden_dim = 256
    if vv['encoder_type'] == 'mlp':
        encoder = GaussianNetwork(mean_network=MLP(
            (path_len + 1) * step_dim,
            latent_dim,
            hidden_sizes=vv['encoder_hidden_sizes'],
            hidden_act=nn.ReLU),
                                  log_var_network=MLP(
                                      (path_len + 1) * step_dim, latent_dim))
    elif vv['encoder_type'] == 'lstm':
        encoder = GaussianBidirectionalNetwork(
            input_dim=step_dim,
            hidden_dim=rnn_hidden_dim,
            num_layers=2,
            mean_network=MLP(2 * rnn_hidden_dim, latent_dim),
            log_var_network=MLP(2 * rnn_hidden_dim, latent_dim))

    if vv['decoder_var_type'] == 'param':
        decoder_log_var_network = Parameter(latent_dim,
                                            step_dim,
                                            init=np.log(0.1))
    else:
        decoder_log_var_network = MLP(rnn_hidden_dim, step_dim)
    if vv['decoder_type'] == 'grnn':
        decoder = GaussianRecurrentNetwork(
            recurrent_network=RNN(
                nn.LSTM(step_dim + latent_dim, rnn_hidden_dim),
                rnn_hidden_dim),
            mean_network=MLP(rnn_hidden_dim,
                             step_dim,
                             hidden_sizes=vv['decoder_hidden_sizes'],
                             hidden_act=nn.ReLU),
            log_var_network=decoder_log_var_network,
            path_len=path_len,
            output_dim=step_dim,
            min_var=1e-4,
        )
    elif vv['decoder_type'] == 'gmlp':
        decoder = GaussianNetwork(
            mean_network=MLP(latent_dim,
                             path_len * step_dim,
                             hidden_sizes=vv['decoder_hidden_sizes'],
                             hidden_act=nn.ReLU),
            log_var_network=Parameter(latent_dim,
                                      path_len * step_dim,
                                      init=np.log(0.1)),
            min_var=1e-4)
    elif vv['decoder_type'] == 'mixedrnn':
        gauss_output_dim = 10
        cat_output_dim = 5
        decoder = MixedRecurrentNetwork(
            recurrent_network=RNN(
                nn.LSTM(step_dim + latent_dim, rnn_hidden_dim),
                rnn_hidden_dim),
            mean_network=MLP(rnn_hidden_dim,
                             gauss_output_dim,
                             hidden_sizes=vv['decoder_hidden_sizes'],
                             hidden_act=nn.ReLU),
            prob_network=MLP(rnn_hidden_dim,
                             cat_output_dim,
                             final_act=nn.Softmax),
            log_var_network=Parameter(latent_dim,
                                      gauss_output_dim,
                                      init=np.log(0.1)),
            path_len=path_len,
            output_dim=step_dim,
            min_var=1e-4,
            gaussian_output_dim=gauss_output_dim,
            cat_output_dim=cat_output_dim)

    if vv['policy_type'] == 'grnn':
        policy = GaussianRecurrentPolicy(
            recurrent_network=RNN(
                nn.LSTM(obs_dim + latent_dim, policy_rnn_hidden_dim),
                policy_rnn_hidden_dim),
            mean_network=MLP(policy_rnn_hidden_dim,
                             action_dim,
                             hidden_act=nn.ReLU),
            log_var_network=Parameter(obs_dim + latent_dim,
                                      action_dim,
                                      init=np.log(1)),
            path_len=path_len,
            output_dim=action_dim)

    elif vv['policy_type'] == 'gmlp':
        policy = GaussianNetwork(
            mean_network=MLP(obs_dim + latent_dim,
                             action_dim,
                             hidden_sizes=vv['policy_hidden_sizes'],
                             hidden_act=nn.ReLU),
            log_var_network=Parameter(obs_dim + latent_dim,
                                      action_dim,
                                      init=np.log(1)))
        policy_ex = GaussianNetwork(mean_network=MLP(
            obs_dim,
            action_dim,
            hidden_sizes=vv['policy_hidden_sizes'],
            hidden_act=nn.ReLU),
                                    log_var_network=Parameter(obs_dim,
                                                              action_dim,
                                                              init=np.log(1)))
    elif vv['policy_type'] == 'crnn':
        policy = RecurrentCategoricalPolicy(
            recurrent_network=RNN(
                nn.LSTM(obs_dim + latent_dim, policy_rnn_hidden_dim),
                policy_rnn_hidden_dim),
            prob_network=MLP(policy_rnn_hidden_dim,
                             action_dim,
                             hidden_sizes=vv['policy_hidden_sizes'],
                             final_act=nn.Softmax),
            path_len=path_len,
            output_dim=action_dim)
    elif vv['policy_type'] == 'cmlp':
        policy = CategoricalNetwork(prob_network=MLP(obs_dim + latent_dim,
                                                     action_dim,
                                                     hidden_sizes=(400, 300,
                                                                   200),
                                                     hidden_act=nn.ReLU,
                                                     final_act=nn.Softmax),
                                    output_dim=action_dim)
        policy_ex = CategoricalNetwork(prob_network=MLP(obs_dim,
                                                        action_dim,
                                                        hidden_sizes=(400, 300,
                                                                      200),
                                                        hidden_act=nn.ReLU,
                                                        final_act=nn.Softmax),
                                       output_dim=action_dim)
    elif vv['policy_type'] == 'lstm':
        policy = LSTMPolicy(input_dim=obs_dim + latent_dim,
                            hidden_dim=rnn_hidden_dim,
                            num_layers=2,
                            output_dim=action_dim)

    vae = TrajVAEBC(encoder=encoder,
                    decoder=decoder,
                    latent_dim=latent_dim,
                    step_dim=step_dim,
                    feature_dim=train_dataset.obs_dim,
                    env=env,
                    path_len=train_dataset.path_len,
                    init_kl_weight=vv['kl_weight'],
                    max_kl_weight=vv['kl_weight'],
                    kl_mul=1.03,
                    loss_type=vv['vae_loss_type'],
                    lr=vv['vae_lr'],
                    obs_dim=obs_dim,
                    act_dim=action_dim,
                    policy=policy,
                    bc_weight=vv['bc_weight'])

    baseline = ZeroBaseline()
    policy_algo = PPO(env,
                      env_name,
                      policy,
                      baseline=baseline,
                      obs_dim=obs_dim,
                      action_dim=action_dim,
                      max_path_length=path_len,
                      center_adv=True,
                      optimizer=optim.Adam(policy.get_params(),
                                           vv['policy_lr'],
                                           eps=1e-5),
                      use_gae=vv['use_gae'],
                      epoch=10,
                      ppo_batch_size=200)

    baseline_ex = ZeroBaseline()
    policy_ex_algo = PPO(env,
                         env_name,
                         policy_ex,
                         baseline=baseline_ex,
                         obs_dim=obs_dim,
                         action_dim=action_dim,
                         max_path_length=path_len,
                         center_adv=True,
                         optimizer=optim.Adam(policy_ex.get_params(),
                                              vv['policy_lr'],
                                              eps=1e-5),
                         use_gae=vv['use_gae'],
                         epoch=10,
                         ppo_batch_size=200,
                         entropy_bonus=vv['entropy_bonus'])

    if vv['load_models_dir'] is not None:
        dir = getcwd(
        ) + "/research/lang/traj2vecv3_jd/" + vv['load_models_dir']
        itr = vv['load_models_idx']
        encoder.load_state_dict(torch.load(dir + '/encoder_%d.pkl' % itr))
        decoder.load_state_dict(torch.load(dir + '/decoder_%d.pkl' % itr))
        policy.load_state_dict(torch.load(dir + '/policy_%d.pkl' % itr))
        policy_ex.load_state_dict(torch.load(dir + '/policy_ex_%d.pkl' % itr))
        vae.optimizer.load_state_dict(
            torch.load(dir + '/vae_optimizer_%d.pkl' % itr))
        policy_algo.optimizer.load_state_dict(
            torch.load(dir + '/policy_optimizer_%d.pkl' % itr))

    rf = lambda obs, rstate: reward_fn(obs, rstate, goals, 3)
    mpc_explore = 4000
    if vv['path_len'] <= 50:
        mpc_explore *= 2
    vaepd = VAEPDEntropy(env,
                         env_name,
                         policy,
                         policy_ex,
                         encoder,
                         decoder,
                         path_len,
                         obs_dim,
                         action_dim,
                         step_dim,
                         policy_algo,
                         policy_ex_algo,
                         train_dataset,
                         latent_dim,
                         vae,
                         batch_size=400,
                         block_config=vv['block_config'],
                         plan_horizon=vv['mpc_plan'],
                         max_horizon=vv['mpc_max'],
                         mpc_batch=vv['mpc_batch'],
                         rand_per_mpc_step=vv['mpc_explore_step'],
                         mpc_explore=mpc_explore,
                         mpc_explore_batch=1,
                         reset_ent=vv['reset_ent'],
                         vae_train_steps=vv['vae_train_steps'],
                         mpc_explore_len=vv['mpc_explore_len'],
                         true_reward_scale=vv['true_reward_scale'],
                         discount_factor=vv['discount_factor'],
                         reward_fn=(rf, init_rstate))

    vaepd.train(train_dataset,
                test_dataset=test_dataset,
                dummy_dataset=dummy_dataset,
                plot_step=10,
                max_itr=vv['max_itr'],
                record_stats=True,
                print_step=1000,
                save_step=2,
                start_itr=0,
                train_vae_after_add=vv['train_vae_after_add'],
                joint_training=vv['joint_training'])
Example #3
0
def run_experiment_here(
        experiment_function,
        exp_prefix="default",
        variant=None,
        exp_id=0,
        seed=0,
        use_gpu=True,
        snapshot_mode='last',
        snapshot_gap=1,
        code_diff=None,
        commit_hash=None,
        script_name=None,
        n_parallel=0,
        base_log_dir=None,
        log_dir=None,
        exp_name=None,
):
    """
    Run an experiment locally without any serialization.

    :param experiment_function: Function. `variant` will be passed in as its
    only argument.
    :param exp_prefix: Experiment prefix for the save file.
    :param variant: Dictionary passed in to `experiment_function`.
    :param exp_id: Experiment ID. Should be unique across all
    experiments. Note that one experiment may correspond to multiple seeds,.
    :param seed: Seed used for this experiment.
    :param use_gpu: Run with GPU. By default False.
    :param script_name: Name of the running script
    :param log_dir: If set, set the log directory to this. Otherwise,
    the directory will be auto-generated based on the exp_prefix.
    :return:
    """
    if variant is None:
        variant = {}
    if seed is None and 'seed' not in variant:
        seed = random.randint(0, 100000)
        variant['seed'] = str(seed)
    if n_parallel > 0:
        from rllab.sampler import parallel_sampler
        parallel_sampler.initialize(n_parallel=n_parallel)
        parallel_sampler.set_seed(seed)
    variant['exp_id'] = str(exp_id)
    reset_execution_environment()
    set_seed(seed)
    setup_logger(
        exp_prefix=exp_prefix,
        variant=variant,
        exp_id=exp_id,
        seed=seed,
        snapshot_mode=snapshot_mode,
        snapshot_gap=snapshot_gap,
        base_log_dir=base_log_dir,
        log_dir=log_dir,
        exp_name=exp_name,
    )
    log_dir = logger.get_snapshot_dir()
    if code_diff is not None:
        with open(osp.join(log_dir, "code.diff"), "w") as f:
            f.write(code_diff)
    if commit_hash is not None:
        with open(osp.join(log_dir, "commit_hash.txt"), "w") as f:
            f.write(commit_hash)
    if script_name is not None:
        with open(osp.join(log_dir, "script_name.txt"), "w") as f:
            f.write(script_name)
    set_gpu_mode(use_gpu)

    print('variant', variant)
    return experiment_function(variant)