def _make_transducer(self):
        transducer, segments, state = super(
            DepConstraint, self)._base_faithfulness_transducer()
        for segment in segments:
            transducer.add_arc(
                Arc(state, segment, segment, CostVector.get_vector(1, 0),
                    state))
            transducer.add_arc(
                Arc(state, segment, NULL_SEGMENT, CostVector.get_vector(1, 0),
                    state))
            if segment.has_feature_bundle(self.feature_bundle):
                transducer.add_arc(
                    Arc(state, NULL_SEGMENT, segment,
                        CostVector.get_vector(1, 1), state))
            else:
                transducer.add_arc(
                    Arc(state, NULL_SEGMENT, segment,
                        CostVector.get_vector(1, 0), state))

        if get_configuration("ALLOW_CANDIDATES_WITH_CHANGED_SEGMENTS"):
            for first_segment, second_segment in permutations(segments, 2):
                transducer.add_arc(
                    Arc(state, first_segment, second_segment,
                        CostVector.get_vector(1, 0), state))

        return transducer
    def _make_transducer(self):
        segments = self.feature_table.get_segments()
        transducer = Transducer(segments, length_of_cost_vectors=0)
        word_segments = self.get_segments()
        n = len(self.word_string)
        states = [State("q{}".format(i), i) for i in range(n+1)]
        for i, state in enumerate(states):
            transducer.add_state(state)
            transducer.add_arc(Arc(state, NULL_SEGMENT, JOKER_SEGMENT, CostVector.get_empty_vector(), state))
            if i != n:
                transducer.add_arc(Arc(states[i], word_segments[i], JOKER_SEGMENT, CostVector.get_empty_vector(), states[i+1]))

        transducer.initial_state = states[0]
        transducer.add_final_state(states[n])
        return transducer
def make_optimal_paths(transducer_input):
    transducer = pickle.loads(pickle.dumps(transducer_input, -1))
    alphabet = transducer.get_alphabet()
    new_arcs = list()
    for segment in alphabet:
        word = Word(segment.get_symbol())
        word_transducer = word.get_transducer()
        #print(word_transducer.dot_representation())
        intersected_machine = Transducer.intersection(word_transducer, transducer)
        states = transducer.get_states()
        for state1, state2 in itertools.product(states, states):
            initial_state = word_transducer.initial_state & state1
            final_state = word_transducer.get_a_final_state() & state2
            temp_transducer = pickle.loads(pickle.dumps(intersected_machine, -1))
            temp_transducer.initial_state = initial_state
            temp_transducer.set_final_state(final_state)
            temp_transducer.clear_dead_states()
            if final_state in temp_transducer.get_final_states():  # otherwise no path.
                try:
                    temp_transducer = remove_suboptimal_paths(temp_transducer)
                    range = temp_transducer.get_range()
                    arc = Arc(state1, segment, range, _get_path_cost(temp_transducer), state2)
                    new_arcs.append(arc)
                except KeyError:
                    pass
                #print("****")
                #print(temp_transducer.dot_representation())

    transducer.set_arcs(new_arcs)
    return transducer
 def _make_transducer(self):
     transducer, segments, state = super(
         IdentConstraint, self)._base_faithfulness_transducer()
     for segment in segments:
         transducer.add_arc(
             Arc(state, segment, segment, CostVector.get_vector(1, 0),
                 state))
         transducer.add_arc(
             Arc(state, segment, NULL_SEGMENT, CostVector.get_vector(1, 0),
                 state))
         transducer.add_arc(
             Arc(state, NULL_SEGMENT, segment, CostVector.get_vector(1, 0),
                 state))
         input_segment = segment
         if input_segment.has_feature_bundle(self.feature_bundle):
             for output_segment in segments:
                 if output_segment.has_feature_bundle(self.feature_bundle):
                     transducer.add_arc(
                         Arc(state, input_segment, output_segment,
                             CostVector.get_vector(1, 0), state))
                 else:
                     transducer.add_arc(
                         Arc(state, input_segment, output_segment,
                             CostVector.get_vector(1, 1), state))
         else:
             for output_segment in segments:
                 transducer.add_arc(
                     Arc(state, input_segment, output_segment,
                         CostVector.get_vector(1, 0), state))
     return transducer
    def _make_transducer(self):
        def compute_num_of_max_satisfied_bundle(segment):
            i = 0
            while i < n and symbol_bundle_characteristic_matrix[segment][i]:
                i += 1
            return i

        def compute_highest_num_of_satisfied_bundle(segment, j):
            for k in range(j + 1, 0, -1):
                if symbol_bundle_characteristic_matrix[segment][k - 1]:
                    return k
            else:
                return 0

        n = len(self.feature_bundles) - 1
        segments = self.feature_table.get_segments()
        transducer = Transducer(segments, name=str(self))

        symbol_bundle_characteristic_matrix = {
            segment: [
                segment.has_feature_bundle(self.feature_bundles[i])
                for i in range(n + 1)
            ]
            for segment in segments
        }

        states = {i: {j: 0 for j in range(i)} for i in range(n + 1)}

        initial_state = State(
            'q0|0'
        )  # here we use a tuple as label. it will change at the end of this function
        states[0][0] = initial_state

        transducer.set_as_single_state(initial_state)

        if not n:
            for segment in segments:
                transducer.add_arc(
                    Arc(
                        states[0][0], JOKER_SEGMENT, segment,
                        CostVector([
                            int(symbol_bundle_characteristic_matrix[segment]
                                [0])
                        ]), states[0][0]))
            transducer.add_arc(
                Arc(states[0][0], JOKER_SEGMENT, NULL_SEGMENT, CostVector([0]),
                    states[0][0]))

        else:
            for i in range(0, n + 1):
                for j in range(i):
                    state = State('q{0}|{1}'.format(i, j))
                    states[i][j] = state
                    transducer.add_state(state)
            max_num_of_satisfied_bundle_by_segment = {
                segment: compute_num_of_max_satisfied_bundle(segment)
                for segment in segments
            }
            for segment in segments:
                transducer.add_arc(
                    Arc(
                        states[0][0], JOKER_SEGMENT, segment, CostVector([0]),
                        states[symbol_bundle_characteristic_matrix[segment]
                               [0]][0]))
            for i in range(n + 1):
                for j in range(i):
                    state = states[i][j]
                    transducer.add_final_state(state)
                    if i != n:
                        for segment in segments:
                            if symbol_bundle_characteristic_matrix[segment][i]:
                                new_state_level = i + 1
                                new_state_mem = min([
                                    j + 1,
                                    max_num_of_satisfied_bundle_by_segment[
                                        segment]
                                ])
                            else:
                                new_state_level = compute_highest_num_of_satisfied_bundle(
                                    segment, j)
                                new_state_mem = min([
                                    max_num_of_satisfied_bundle_by_segment[
                                        segment],
                                    abs(new_state_level - 1)
                                ])
                            new_terminus = states[new_state_level][
                                new_state_mem]
                            transducer.add_arc(
                                Arc(state, JOKER_SEGMENT, segment,
                                    CostVector([0]), new_terminus))
                            transducer.add_arc(
                                Arc(new_terminus, JOKER_SEGMENT, segment,
                                    CostVector([0]), new_terminus))
                    else:  # i = n
                        for segment in segments:
                            new_state_level = compute_highest_num_of_satisfied_bundle(
                                segment, j)
                            new_state_mem = min([
                                max_num_of_satisfied_bundle_by_segment[
                                    segment],
                                abs(new_state_level - 1)
                            ])
                            new_terminus = states[new_state_level][
                                new_state_mem]
                            transducer.add_arc(
                                Arc(
                                    state, JOKER_SEGMENT, segment,
                                    CostVector([
                                        int(symbol_bundle_characteristic_matrix[
                                            segment][i])
                                    ]), new_terminus))

        transducer.clear_dead_states()
        for state in transducer.states:
            transducer.add_arc(
                Arc(state, JOKER_SEGMENT, NULL_SEGMENT, CostVector([0]),
                    state))
        return transducer