def apply(self, data, rotation=None): """ @param rotation: apply rotation to the wedge first """ # if no missing wedge if self.start_ang == -90 and self.end_ang == 90: return data if self._volume is not None and np.array_equal(self._volume_shape, data.shape): pass else: self._create_wedge_volume(data.shape) if rotation is not None: # rotate the wedge first assert len(rotation) == 3 from pytom.tompy.transform import rotate3d, fourier_reduced2full, fourier_full2reduced, fftshift, ifftshift isodd = self._volume_shape[2] % 2 filter_vol = fftshift(fourier_reduced2full(self._volume, isodd)) filter_vol = rotate3d(filter_vol, rotation[0], rotation[1], rotation[2], order=1) # linear interp! filter_vol = fourier_full2reduced(ifftshift(filter_vol)) else: filter_vol = self._volume from pytom.tompy.transform import fourier_filter res = fourier_filter(data, filter_vol, False) return res
def set_wedge_volume(self, wedge_vol, half=True, isodd=False): if half: self._volume = wedge_vol # human understandable version with 0-freq in the center from transform import fourier_reduced2full, fftshift self._whole_volume = fftshift( fourier_reduced2full(self._volume, isodd)) else: self._whole_volume = wedge_vol from transform import fourier_full2reduced, ifftshift self._volume = fourier_full2reduced(ifftshift(self._whole_volume))
def apply(self, data, rotation=None): if rotation is not None: # rotate the wedge first assert len(rotation) == 3 from transform import rotate3d, fourier_full2reduced, ifftshift filter_vol = rotate3d(self._whole_volume, rotation[0], rotation[1], rotation[2]) filter_vol = fourier_full2reduced(ifftshift(filter_vol)) else: filter_vol = self._volume from transform import fourier_filter res = fourier_filter(data, filter_vol, False) return res