def final_model(df): #final model we decided on through selection model = RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini', max_depth=None, max_features='log2', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=400, n_jobs=1, oob_score=False, random_state=None, verbose=0, warm_start=False) #get the data in the form we want according to transform function X, y = transform_train(df) #fit the model model.fit(X, y) with open('website/model.pkl', 'wb') as f: # Write the model to a file. pickle.dump(model, f)
if args.src == 'visda': src = visda_train tgt = visda_test visda = True return src, tgt, office, visda, noe src, tgt, office, visda, noe = get_datasetname(args) batch_size = {"train": 36, "val": 36, "test": 4} for i in range(10): batch_size["val" + str(i)] = 4 if visda == False: data_transforms = { 'train': tran.transform_train(resize_size=28, crop_size=28), 'val': tran.transform_train(resize_size=28, crop_size=28), } data_transforms = tran.transform_test(data_transforms=data_transforms, resize_size=28, crop_size=28) dsets = { "train": ImageList(open(src).readlines(), transform=data_transforms["train"]), "val": ImageList(open(tgt).readlines(), transform=data_transforms["val"]), "test": ImageList(open(tgt).readlines(), transform=data_transforms["val"]) } dset_loaders = { x: torch.utils.data.DataLoader(dsets[x],
if args.src == 'visda': src = visda_train tgt = visda_test visda = True return src, tgt, office, visda, noe src, tgt, office, visda, noe = get_datasetname(args) batch_size = {"train": 36, "val": 36, "test": 4} for i in range(10): batch_size["val" + str(i)] = 4 if visda == False: data_transforms = { 'train': tran.transform_train(resize_size=256, crop_size=224), 'val': tran.transform_train(resize_size=256, crop_size=224), } data_transforms = tran.transform_test(data_transforms=data_transforms, resize_size=256, crop_size=224) dsets = { "train": ImageList(open(src).readlines(), transform=data_transforms["train"]), "val": ImageList(open(tgt).readlines(), transform=data_transforms["val"]), "test": ImageList(open(tgt).readlines(), transform=data_transforms["val"]) } dset_loaders = { x: torch.utils.data.DataLoader(dsets[x],