Example #1
0
def smooth_label_images(images, sigma=1, dtype=None):
    if dtype is None:
        dtype = images[0].dtype
    smoothed_images = [gaussian(image, sigma=sigma) for image in images]
    smoothed = np.stack(smoothed_images, 0)
    label_images = np.argmax(smoothed, axis=0)
    return split_label_image(label_images, range(0, len(images)), dtype=dtype)
 def split_and_smooth_single_label(self, image, landmark_index):
     """
     Splits a groundtruth label image into a stack of one-hot encoded images.
     :param image: The groundtruth label image.
     :return: The one-hot encoded image.
     """
     label_image = (image == self.landmark_mapping[landmark_index]).astype(np.float32)
     label_image_smoothed = gaussian(label_image, self.label_gaussian_sigma)
     return (label_image_smoothed > 0.5).astype(np.uint8)
Example #3
0
 def split_labels(self, image):
     """
     Splits a groundtruth label image into a stack of one-hot encoded images.
     :param image: The groundtruth label image.
     :return: The one-hot encoded image.
     """
     split = split_label_image(np.squeeze(image, 0), list(range(8)),
                               np.uint8)
     split_smoothed = [
         gaussian(i, self.label_gaussian_sigma) for i in split
     ]
     smoothed = np.stack(split_smoothed, 0)
     image_smoothed = np.argmax(smoothed, axis=0)
     split = split_label_image(image_smoothed, list(range(8)), np.uint8)
     return np.stack(split, 0)
Example #4
0
 def get_multiple_maximum_coordinates(self, image):
     """
     Return local maxima of the image that are larger than self.min_max_value. If self.smoothing_sigma > 0, perform Gaussian smoothing
     to reduce the number of local maxima.
     :param image: Heatmap image.
     :return: List of value, coord tuples of local maxima.
     """
     if self.smoothing_sigma > 0.0:
         image_smoothed = gaussian(image, self.smoothing_sigma)
         indizes, values = utils.np_image.local_maxima(image_smoothed)
     else:
         indizes, values = utils.np_image.local_maxima(image)
     values_greater = values > self.min_max_value
     values = values[values_greater]
     coords = indizes[values_greater]
     refined_coords = [
         utils.np_image.refine_coordinate_subpixel(image, c) for c in coords
     ]
     return list(
         reversed(sorted(zip(values, refined_coords), key=lambda x: x[0])))
    def data_generators(self, iterator, datasources, transformation,
                        image_post_processing,
                        random_translation_single_landmark, image_size):
        """
        Returns the data generators that process one input. See datasources() for dict values.
        :param datasources: datasources dict.
        :param transformation: transformation.
        :param image_post_processing: The np postprocessing function for the image data generator.
        :return: A dict of data generators.
        """
        generators_dict = {}
        generators_dict['image'] = ImageGenerator(
            self.dim,
            image_size,
            self.image_spacing,
            interpolator='linear',
            post_processing_np=image_post_processing,
            data_format=self.data_format,
            resample_default_pixel_value=self.image_default_pixel_value,
            name='image',
            parents=[datasources['image'], transformation])
        if self.generate_landmark_mask:
            generators_dict['landmark_mask'] = ImageGenerator(
                self.dim,
                image_size,
                self.image_spacing,
                interpolator='nearest',
                data_format=self.data_format,
                resample_default_pixel_value=0,
                name='landmark_mask',
                parents=[datasources['landmark_mask'], transformation])
        if self.generate_labels or self.generate_single_vertebrae:
            generators_dict['labels'] = ImageGenerator(
                self.dim,
                image_size,
                self.image_spacing,
                interpolator='nearest',
                post_processing_np=self.split_labels,
                data_format=self.data_format,
                name='labels',
                parents=[datasources['labels'], transformation])
        if self.generate_heatmaps or self.generate_spine_heatmap:
            generators_dict['heatmaps'] = LandmarkGeneratorHeatmap(
                self.dim,
                image_size,
                self.image_spacing,
                sigma=self.heatmap_sigma,
                scale_factor=1.0,
                normalize_center=True,
                data_format=self.data_format,
                name='heatmaps',
                parents=[datasources['landmarks'], transformation])
        if self.generate_landmarks:
            generators_dict['landmarks'] = LandmarkGenerator(
                self.dim,
                image_size,
                self.image_spacing,
                data_format=self.data_format,
                name='landmarks',
                parents=[datasources['landmarks'], transformation])
        if self.generate_single_vertebrae_heatmap:
            single_landmark = LambdaNode(
                lambda id_dict, landmarks: landmarks[int(id_dict[
                    'landmark_id']):int(id_dict['landmark_id']) + 1],
                name='single_landmark',
                parents=[iterator, datasources['landmarks']])
            if random_translation_single_landmark:
                single_landmark = LambdaNode(
                    lambda l: [
                        Landmark(
                            l[0].coords + float_uniform(
                                -self.random_translation_single_landmark, self.
                                random_translation_single_landmark, [self.dim
                                                                     ]), True)
                    ],
                    name='single_landmark_translation',
                    parents=[single_landmark])
            generators_dict['single_heatmap'] = LandmarkGeneratorHeatmap(
                self.dim,
                image_size,
                self.image_spacing,
                sigma=self.heatmap_sigma,
                scale_factor=1.0,
                normalize_center=True,
                data_format=self.data_format,
                name='single_heatmap',
                parents=[single_landmark, transformation])
        if self.generate_single_vertebrae:
            if self.data_format == 'channels_first':
                generators_dict['single_label'] = LambdaNode(
                    lambda id_dict, images: images[int(id_dict[
                        'landmark_id']) + 1:int(id_dict['landmark_id']) + 2,
                                                   ...],
                    name='single_label',
                    parents=[iterator, generators_dict['labels']])
            else:
                generators_dict['single_label'] = LambdaNode(
                    lambda id_dict, images: images[...,
                                                   int(id_dict['landmark_id'])
                                                   + 1:int(id_dict[
                                                       'landmark_id']) + 2],
                    name='single_label',
                    parents=[iterator, generators_dict['labels']])
        if self.generate_spine_heatmap:
            generators_dict['spine_heatmap'] = LambdaNode(
                lambda images: gaussian(np.sum(images,
                                               axis=0 if self.data_format ==
                                               'channels_first' else -1,
                                               keepdims=True),
                                        sigma=self.spine_heatmap_sigma),
                name='spine_heatmap',
                parents=[generators_dict['heatmaps']])

        return generators_dict
    def data_generators(self, iterator, datasources, transformation, image_post_processing, random_translation_single_landmark, image_size, crop=False):
        """
        Returns the data generators that process one input. See datasources() for dict values.
        :param datasources: datasources dict.
        :param transformation: transformation.
        :param image_post_processing: The np postprocessing function for the image data generator.
        :return: A dict of data generators.
        """
        generators_dict = {}
        kwparents = {'output_size': image_size}
        image_datasource = datasources['image'] if not crop else LambdaNode(self.landmark_based_crop, name='image_cropped', kwparents={'image': datasources['image'], 'landmarks': datasources['landmarks']})
        generators_dict['image'] = ImageGenerator(self.dim,
                                                  None,
                                                  self.image_spacing,
                                                  interpolator='linear',
                                                  post_processing_np=image_post_processing,
                                                  data_format=self.data_format,
                                                  resample_default_pixel_value=self.image_default_pixel_value,
                                                  np_pixel_type=self.output_image_type,
                                                  name='image',
                                                  parents=[image_datasource, transformation],
                                                  kwparents=kwparents)
        # generators_dict['image'] = ImageGenerator(self.dim,
        #                                           None,
        #                                           self.image_spacing,
        #                                           interpolator='linear',
        #                                           post_processing_np=image_post_processing,
        #                                           data_format=self.data_format,
        #                                           resample_default_pixel_value=self.image_default_pixel_value,
        #                                           np_pixel_type=self.output_image_type,
        #                                           name='image_cropped',
        #                                           parents=[LambdaNode(self.landmark_based_crop, name='image_cropped', kwparents={'image': datasources['image'], 'landmarks': datasources['landmarks']}), transformation],
        #                                           kwparents=kwparents)
        if self.generate_landmark_mask:
            generators_dict['landmark_mask'] = ImageGenerator(self.dim,
                                                              None,
                                                              self.image_spacing,
                                                              interpolator='nearest',
                                                              data_format=self.data_format,
                                                              resample_default_pixel_value=0,
                                                              name='landmark_mask',
                                                              parents=[datasources['landmark_mask'], transformation],
                                                              kwparents=kwparents)
        if self.generate_labels:
            generators_dict['labels'] = ImageGenerator(self.dim,
                                                       None,
                                                       self.image_spacing,
                                                       interpolator='nearest',
                                                       post_processing_np=self.split_labels,
                                                       data_format=self.data_format,
                                                       name='labels',
                                                       parents=[datasources['labels'], transformation],
                                                       kwparents=kwparents)
        if self.generate_heatmaps or self.generate_spine_heatmap:
            generators_dict['heatmaps'] = LandmarkGeneratorHeatmap(self.dim,
                                                                   None,
                                                                   self.image_spacing,
                                                                   sigma=self.heatmap_sigma,
                                                                   scale_factor=1.0,
                                                                   normalize_center=True,
                                                                   data_format=self.data_format,
                                                                   name='heatmaps',
                                                                   parents=[datasources['landmarks'], transformation],
                                                                   kwparents=kwparents)
        if self.generate_landmarks:
            generators_dict['landmarks'] = LandmarkGenerator(self.dim,
                                                             None,
                                                             self.image_spacing,
                                                             data_format=self.data_format,
                                                             name='landmarks',
                                                             parents=[datasources['landmarks'], transformation],
                                                             kwparents=kwparents)
        if self.generate_single_vertebrae_heatmap:
            single_landmark = LambdaNode(lambda id_dict, landmarks: landmarks[int(id_dict['landmark_id']):int(id_dict['landmark_id']) + 1],
                                         name='single_landmark',
                                         parents=[iterator, datasources['landmarks']])
            if random_translation_single_landmark:
                single_landmark = LambdaNode(lambda l: [Landmark(l[0].coords + float_uniform(-self.random_translation_single_landmark, self.random_translation_single_landmark, [self.dim]), True)],
                                             name='single_landmark_translation',
                                             parents=[single_landmark])
            generators_dict['single_heatmap'] = LandmarkGeneratorHeatmap(self.dim,
                                                                         None,
                                                                         self.image_spacing,
                                                                         sigma=self.single_heatmap_sigma,
                                                                         scale_factor=1.0,
                                                                         normalize_center=True,
                                                                         data_format=self.data_format,
                                                                         np_pixel_type=self.output_image_type,
                                                                         name='single_heatmap',
                                                                         parents=[single_landmark, transformation],
                                                                         kwparents=kwparents)
        if self.generate_single_vertebrae:
            if self.generate_labels:
                if self.data_format == 'channels_first':
                    generators_dict['single_label'] = LambdaNode(lambda id_dict, images: images[int(id_dict['landmark_id']) + 1:int(id_dict['landmark_id']) + 2, ...],
                                                                 name='single_label',
                                                                 parents=[iterator, generators_dict['labels']])
                else:
                    generators_dict['single_label'] = LambdaNode(lambda id_dict, images: images[..., int(id_dict['landmark_id']) + 1:int(id_dict['landmark_id']) + 2],
                                                                 name='single_label',
                                                                 parents=[iterator, generators_dict['labels']])
            else:
                labels_unsmoothed = ImageGenerator(self.dim,
                                                   None,
                                                   self.image_spacing,
                                                   interpolator='nearest',
                                                   post_processing_np=None,
                                                   data_format=self.data_format,
                                                   name='labels_unsmoothed',
                                                   parents=[datasources['labels'], transformation],
                                                   kwparents=kwparents)
                generators_dict['single_label'] = LambdaNode(lambda id_dict, labels: self.split_and_smooth_single_label(labels, int(id_dict['landmark_id'])),
                                                             name='single_label',
                                                             parents=[iterator, labels_unsmoothed])
        if self.generate_spine_heatmap:
            generators_dict['spine_heatmap'] = LambdaNode(lambda images: normalize(gaussian(np.sum(images, axis=0 if self.data_format == 'channels_first' else -1, keepdims=True), sigma=self.spine_heatmap_sigma), out_range=(0, 1)),
                                                          name='spine_heatmap',
                                                          parents=[generators_dict['heatmaps']])

        return generators_dict