Example #1
0
    def find_state(self, quaternion):
        """
        State is represented as:
        -(face on table, direction of 'front' AR tag) for 
        right side up or upside down blocks
        -(face on table, direction of top) otherwise
        """
        rot = trans.quaternion_matrix(quaternion)
        bot_face, direction = None, None
        if abs(1 - rot[0, 0]) < .01:
            bot_face = 5
        elif abs(1 - rot[2, 0]) < .01:
            bot_face = 4
        elif abs(1 + rot[1, 0]) < .01:
            bot_face = 1
        elif abs(1 + rot[2, 0]) < .01:
            bot_face = 2
        elif abs(1 - rot[1, 0]) < .01:
            bot_face = 3
        else:
            bot_face = 0

        # Literally magic
        if bot_face in {1, 2, 3, 4}:
            ang = trans.angle_between_vectors([1, 0, 0], rot[:3, 1])
            if bot_face in {1, 3}:
                dot = np.dot(np.array([0, 0, 1]), rot[:3, 1])
            else:
                dot = np.dot(np.array([0, 1, 0]), rot[:3, 1])
            if bot_face in {1, 4}:
                dot = -dot
            if ang < .8:
                direction = 1
            elif ang > 2.6:
                direction = 3
            elif dot > 0:
                direction = 0
            else:
                direction = 2
        else:
            ang = trans.angle_between_vectors([0, 0, 1], rot[:3, 1])
            dot = np.dot(np.array([0, 1, 0]), rot[:3, 1])
            if bot_face == 0:
                ang = abs(ang - 3.14)
            if ang < .8:
                direction = 0
            elif ang > 2.6:
                direction = 2
            elif dot > 0:
                direction = 3
            else:
                direction = 1

        return (bot_face, direction)
Example #2
0
def align(atoms, init_vec, align_vec):
    import transformations
    import numpy as np

    if len(init_vec) == 2:
        orig_atom_ind = init_vec[0]
        final_atom_ind = init_vec[1]
        init_vec = atoms[final_atom_ind].position - atoms[orig_atom_ind].position

    if len(align_vec) == 2:
        orig_atom_ind = align_vec[0]
        final_atom_ind = align_vec[1]
        align_vec = atoms[final_atom_ind].position - atoms[orig_atom_ind].position

    rot_axis = np.cross(init_vec, align_vec)
    nrot_axis = rot_axis/np.linalg.norm(rot_axis)

    angle = transformations.angle_between_vectors(init_vec, align_vec)

    rot_M = transformations.rotation_matrix(angle, nrot_axis)[:3,:3]

    for a in atoms:
        a.position = rot_M.dot(a.position)

    return atoms
Example #3
0
def align(atoms, init_vec, align_vec):
    import transformations
    import numpy as np

    if len(init_vec) == 2:
        orig_atom_ind = init_vec[0]
        final_atom_ind = init_vec[1]
        init_vec = atoms[final_atom_ind].position - atoms[
            orig_atom_ind].position

    if len(align_vec) == 2:
        orig_atom_ind = align_vec[0]
        final_atom_ind = align_vec[1]
        align_vec = atoms[final_atom_ind].position - atoms[
            orig_atom_ind].position

    rot_axis = np.cross(init_vec, align_vec)
    nrot_axis = rot_axis / np.linalg.norm(rot_axis)

    angle = transformations.angle_between_vectors(init_vec, align_vec)

    rot_M = transformations.rotation_matrix(angle, nrot_axis)[:3, :3]

    for a in atoms:
        a.position = rot_M.dot(a.position)

    return atoms
Example #4
0
def fromBarToEuler(bar, dist_to_nominal, rot):
    #just to be simpler
    bar_y = -bar[1]
    bar_x = bar[0]
    #camera angles
    cam_x = 50
    cam_y = 50
    angle_x = cam_x / 2 * bar_x
    angle_y = cam_y / 2 * bar_y
    angle_x = angle_x / 180 * math.pi
    angle_y = angle_y / 180 * math.pi
    y = -math.tan(angle_x) * dist_to_nominal
    z = math.tan(angle_y) * dist_to_nominal
    x = dist_to_nominal
    drone_to_true_gate = np.array([x, y, z])
    #drone_dir = np.array(Quaternion([rot[j] for j in [1,2,3,0]]).rotate([1, 0, 0]))
    drone_dir = [1, 0, 0]
    try:
        M = rotation_matrix(
            angle_between_vectors(drone_to_true_gate, drone_dir),
            vector_product(drone_to_true_gate, drone_dir))
        ret = rotationMatrixToEulerAngles(M).tolist()
    except:
        ret = [0.0, 0.0, 0.0]
    return ret
Example #5
0
def vertical_straight_or_fit(edge):
    edge_dir = edge[0].GetVectorTo(edge[1])
    zpoint = edge[0].CopyLinear(0, 0, 1)
    z_dir = edge[0].GetVectorTo(zpoint)
    normal = Point3.Cross(z_dir, edge_dir)
    if angle_between_vectors(edge_dir.ToArr(), [0, 1, 0],
                             directed=False) < math.radians(1):
        return None
    return create_cut_plane(edge[0], edge[1], normal)
Example #6
0
    def _quaternion_distance(self, joint_orientation):
        """
        Args:
            joint_orientation(Vec4f): quaternion (qw, qx, qy, qz)

        Returns:
            angle (float)
        """
        v1 = quaternion_rotate_vector(joint_orientation, self.ORIGIN)
        v2 = quaternion_rotate_vector(self.orientation, self.ORIGIN)
        return angle_between_vectors(v1, v2)
Example #7
0
def cone_transf_m(apex,L,r_y):
    import numpy as np
    import transformations
    """a matrix that rotates and translates coordinates. A cone defined by the coordinates of it's apex,
    the vector L between the centre of its base and the apex, and a vector r_y between the centre of its base and a point of maximum radius (the cone can be elliptical)
    is translated such that the apex is at the origin, the cone lies along the z axis and the radius of maximum width lies along the y-axis"""
    trans = -np.array(apex).reshape(3,1)

    angle1 = transformations.angle_between_vectors(L, [0,0,1])
    if angle1:
        rot_axis1 = np.cross(L,[0,0,1])
        nrot_axis1 = rot_axis1/np.linalg.norm(rot_axis1)
        rot1 = transformations.rotation_matrix(angle1, nrot_axis1)[:3,:3]
    else:
        rot1 = np.identity(3)

    r_y = rot1.dot(r_y)
    angle2 = transformations.angle_between_vectors(r_y, [0,1,0])
    if angle2:
        rot_axis2 = np.cross([0,1,0],r_y)
        nrot_axis2 = rot_axis2/np.linalg.norm(rot_axis2)
        rot2 = transformations.rotation_matrix(angle2, nrot_axis2)[:3,:3]
    else:
        rot2 = np.identity(3)

    #combine rot matrices
    rot = np.dot(rot1,rot2)

    #make rotation matrix into an affine matrix
    final_rot = np.identity(4)
    final_rot[:3,:3] = rot

    #make translation into an affine matrix
    final_trans = np.identity(4)
    final_trans[:3,3:] = trans

    #combine translation and rotation
    final = final_rot.dot(final_trans)

    return final
Example #8
0
def cone_transf_m(apex, L, r_y):
    import numpy as np
    import transformations
    """a matrix that rotates and translates coordinates. A cone defined by the coordinates of it's apex,
    the vector L between the centre of its base and the apex, and a vector r_y between the centre of its base and a point of maximum radius (the cone can be elliptical)
    is translated such that the apex is at the origin, the cone lies along the z axis and the radius of maximum width lies along the y-axis"""
    trans = -np.array(apex).reshape(3, 1)

    angle1 = transformations.angle_between_vectors(L, [0, 0, 1])
    if angle1:
        rot_axis1 = np.cross(L, [0, 0, 1])
        nrot_axis1 = rot_axis1 / np.linalg.norm(rot_axis1)
        rot1 = transformations.rotation_matrix(angle1, nrot_axis1)[:3, :3]
    else:
        rot1 = np.identity(3)

    r_y = rot1.dot(r_y)
    angle2 = transformations.angle_between_vectors(r_y, [0, 1, 0])
    if angle2:
        rot_axis2 = np.cross([0, 1, 0], r_y)
        nrot_axis2 = rot_axis2 / np.linalg.norm(rot_axis2)
        rot2 = transformations.rotation_matrix(angle2, nrot_axis2)[:3, :3]
    else:
        rot2 = np.identity(3)

    #combine rot matrices
    rot = np.dot(rot1, rot2)

    #make rotation matrix into an affine matrix
    final_rot = np.identity(4)
    final_rot[:3, :3] = rot

    #make translation into an affine matrix
    final_trans = np.identity(4)
    final_trans[:3, 3:] = trans

    #combine translation and rotation
    final = final_rot.dot(final_trans)

    return final
def get_angle(v1, v2, pt, index=None):
    ng = angle_between_vectors(v1, v2, directed=True)
    trace("angle " + pt + " " + pt + "' " + str(ff2(v1)) + " -> " +
          str(ff2(v2)))
    # devel
    v11 = Vector((v1[0], v1[1], v1[2]))
    v22 = Vector((v2[0], v2[1], v2[2]))
    rot = v22.rotation_difference(v11).to_euler()
    if index is not None:
        trace("TEST: " + str(rot))
        return rot[index]

    trace("angle " + pt + " " + pt + "' " + str(ff2(v1)) + " -> " +
          str(ff2(v2)) + " is:" + str(ng))
    return ng
Example #10
0
def getEulerToDirection(line, nb_gates_nominal, nominal_gates_ref):
    gates = []
    for i in range(nb_gates_nominal):
        if len(line["nextGates"]) > i:
            arr = nominal_gates_ref[line["nextGates"][i]]["nominal_location"]
            center = np.array([np.mean([e[j] for e in arr]) for j in range(3)])
            gate = center - np.array(
                [line["trans"][e] for e in ["x", "y", "z"]])
            drone = np.array(
                Quaternion([line["rot"][j]
                            for j in [1, 2, 3, 0]]).rotate([1, 0, 0]))
            M = rotation_matrix(angle_between_vectors(gate, drone),
                                np.cross(gate, drone))
            gates.append(rotationMatrixToEulerAngles(M).tolist())
        else:
            gates.append(None)
    return gates
Example #11
0
 def apply_expansion(self, open_loop, tolerance=1):
     ind = 0
     for point in open_loop[:-1]:
         toNext = point.GetVectorTo(open_loop[ind + 1])
         toNext.z = 0  # level out to xy-plane
         # if vector is roof lape suuntainen, extrude
         expand = None
         for key, direction in self._keys.items():
             # big tolerance for jiiri, lyhty, whatnot.
             if angle_between_vectors(
                     toNext.ToArr(), direction,
                     directed=True) < math.radians(tolerance):
                 expand = self._expander[key]
                 break
         # paatyraystaat yli
         if expand is not None:
             open_loop[ind].Translate(expand)
             open_loop[ind + 1].Translate(expand)
         ind += 1
     if self._expander["up"] is not None:
         open_loop[0].Translate(self._expander["up"])
         open_loop[-1].Translate(self._expander["up"])
Example #12
0
def align_xy(pos):
    #align a set of ring coordinates to the xy-plane, with the center on the origin
    #1)shift the coordinates to to have the center on the origin
    #2)rotate the coordinates so that the plane is in the xy-plane
  
    natom=len(pos) #number of atoms in the ring
    #shift coordinates so that the center is on the origin:
    center=np.average(pos,axis=0)
    pos0=pos-center
    #calculate the mean plane:
    R1=sum(pos0[i,:]*np.sin(2*np.pi*i/natom) for i in xrange(natom))
    R2=sum(pos0[i,:]*np.cos(2*np.pi*i/natom) for i in xrange(natom))
    plane=np.cross(R1,R2) #plane is the vector normal to the plane
    plane=plane/np.linalg.norm(plane) #normalize
  #   print "normalized plane",plane
    zaxis=np.array([0,0,1])
    xaxis=np.array([1,0,0])
    theta=0.0
    #rotate coordinates so that the mean plane is in the xy-plane:
    if abs(np.dot(plane,zaxis)) != 1.0: #ring is not in the xy-plane
      #calculate the rotation axis:
      #rotate the ring coordinates according to the rotation matrix:
      theta=trans.angle_between_vectors(plane, zaxis)
      angle=theta
      if theta > np.pi/2:
        angle=theta-np.pi
      if theta < -np.pi/2:
        angle=np.pi-theta
  #     print "angle,theta",angle,theta
  #     M = trans.rotation_matrix(-theta, trans.vector_product(plane, zaxis))
      M = trans.rotation_matrix(angle, trans.vector_product(plane, zaxis))
  #     print "M",M[:3,:3]
      pos0=np.dot(pos0, M[:3,:3].T)
  #     for i in xrange(natom):
  #       pos[i]=dot(M[:3,:3],pos[i])
  #       pos[i]=dot(M,pos[i])
    return pos0,theta,plane,center
Example #13
0
def mode_train(train_loader, dev_loader, train_size_aug, dev_size_aug):
    check_dir(save_root_dir + '/' + model_name)

    device = torch.device('cuda')

    if model_pretrained:
        print('Loading pretrained model from {}'.format(save_root_dir + '/' + model_pretrained + '/model.pth'))
        model = torch.load(save_root_dir + '/' + model_pretrained + '/model.pth', map_location=device)
    else:
        model = VSNet(num_classes=num_classes)
        model = nn.DataParallel(model, device_ids=[0, 1, 2, 3])

    # criterion = nn.MSELoss(reduction='sum')
    optimizer = optim.Adam(model.parameters(), lr=learning_rate)
    # optimizer = optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)

    model.to(device)

    scheduler = MultiStepLR(optimizer, milestones=milestones, gamma=gamma)

    tb.configure(save_root_dir + '/' + model_name)

    start_time = time.time()

    tb_count = 0
    for epoch in range(num_epochs):

        scheduler.step()

        # Training
        model.train()
        running_loss = 0.0
        for i, sample in enumerate(train_loader, 0):
            if i == 1 and epoch == 0:
                start_time = time.time()
            img_a, img_b, label = sample

            optimizer.zero_grad()

            img_a = img_a.to(device)
            img_b = img_b.to(device)
            label = label.to(device)

            output = model(img_a, img_b)

            loss = combined_loss_quat(output, label, weights=weights)

            loss.backward()

            optimizer.step()

            running_loss += loss.item() * output.shape[0]

            output = output.cpu().detach().numpy()
            label = label.cpu().detach().numpy()

            error = np.zeros(8)

            for j in range(output.shape[0]):
                error[:3] += np.abs(output[j, :3] - label[j, :3])

                quat_output = normalize_q(output[j, 3:])
                quat_label = label[j, 3:]

                axis_output, angle_output = axis_angle_from_quat(quat_output)
                axis_label, angle_label = axis_angle_from_quat(quat_label)

                error_mag = np.abs(angle_output - angle_label)
                error_mag = error_mag if error_mag < np.pi else error_mag - np.pi
                error_dir = angle_between_vectors(axis_output, axis_label)
                error[3] += np.nan_to_num(error_mag)
                error[4] += np.nan_to_num(error_dir)

                rpy_output = np.array(euler_from_quaternion(quat_output))
                rpy_label = np.array(euler_from_quaternion(quat_label))
                error[5:] += np.abs(rpy_output - rpy_label)

            error /= output.shape[0]
            error[:3] *= 1000
            error[3:] = np.rad2deg(error[3:])
            est_time = (time.time() - start_time) / (epoch * len(train_loader) + i + 1) * (
                    num_epochs * len(train_loader))
            est_time = str(datetime.timedelta(seconds=est_time))
            print(
                '[TRAIN][{}][EST:{}] Epoch {}, Batch {}, Loss = {:0.7f}, error: x={:0.2f}mm,y={:0.2f}mm,z={:0.2f}mm,mag={:0.2f}deg,dir={:0.2f}deg,roll={:0.2f}deg,pitch={:0.2f}deg,yaw={:0.2f}deg'.format(
                    time.time() - start_time, est_time, epoch + 1, i + 1,
                    loss.item(), *error))

            tb.log_value(name='Loss', value=loss.item(), step=tb_count)
            tb.log_value(name='x/mm', value=error[0], step=tb_count)
            tb.log_value(name='y/mm', value=error[1], step=tb_count)
            tb.log_value(name='z/mm', value=error[2], step=tb_count)
            tb.log_value(name='mag/deg', value=error[3], step=tb_count)
            tb.log_value(name='dir/deg', value=error[4], step=tb_count)
            tb.log_value(name='roll/deg', value=error[5], step=tb_count)
            tb.log_value(name='pitch/deg', value=error[6], step=tb_count)
            tb.log_value(name='yaw/deg', value=error[7], step=tb_count)
            tb_count += 1

        # Dev eval
        model.eval()
        with torch.no_grad():
            running_error_dev = np.zeros(8)
            # running_error_dev = np.zeros(2)
            for i, sample in enumerate(dev_loader, 0):
                img_a, img_b, label = sample

                img_a = img_a.to(device)
                img_b = img_b.to(device)

                output = model(img_a, img_b)

                output = output.cpu().detach().numpy()

                label = label.numpy()

                error = np.zeros(8)
                # error = np.zeros(2)

                for j in range(output.shape[0]):
                    error[:3] += np.abs(output[j, :3] - label[j, :3])

                    quat_output = normalize_q(output[j, 3:])
                    quat_label = label[j, 3:]

                    axis_output, angle_output = axis_angle_from_quat(quat_output)
                    axis_label, angle_label = axis_angle_from_quat(quat_label)

                    error_mag = np.abs(angle_output - angle_label)
                    error_mag = error_mag if error_mag < np.pi else error_mag - np.pi
                    error_dir = angle_between_vectors(axis_output, axis_label)
                    error[3] += np.nan_to_num(error_mag)
                    error[4] += np.nan_to_num(error_dir)

                    rpy_output = np.array(euler_from_quaternion(quat_output))
                    rpy_label = np.array(euler_from_quaternion(quat_label))
                    error[5:] += np.abs(rpy_output - rpy_label)

                error[:3] *= 1000
                error[3:] = np.rad2deg(error[3:])

                running_error_dev += error
                error /= output.shape[0]

                print(
                    '[EVAL][{}] Epoch {}, Batch {}, error: x={:0.2f}mm,y={:0.2f}mm,z={:0.2f}mm,mag={:0.2f}deg,dir={:0.2f}deg'.format(
                        time.time() - start_time, epoch + 1, i + 1, *error))

        average_loss = running_loss / train_size_aug
        average_error = running_error_dev / dev_size_aug
        print(
            '[SUMMARY][{}] Summary: Epoch {}, loss = {:0.7f}, dev_eval: x={:0.2f}mm,y={:0.2f}mm,z={:0.2f}mm,mag={:0.2f}deg,dir={:0.2f}deg,roll={:0.2f}deg,pitch={:0.2f}deg,yaw={:0.2f}deg\n\n'.format(
                time.time() - start_time, epoch + 1, average_loss, *average_error))

        tb.log_value(name='Dev loss', value=average_loss, step=epoch)
        tb.log_value(name='Dev x/mm', value=average_error[0], step=epoch)
        tb.log_value(name='Dev y/mm', value=average_error[1], step=epoch)
        tb.log_value(name='Dev z/mm', value=average_error[2], step=epoch)
        tb.log_value(name='Dev mag/deg', value=average_error[3], step=epoch)
        tb.log_value(name='Dev dir/deg', value=average_error[4], step=epoch)
        tb.log_value(name='Dev roll/deg', value=average_error[5], step=epoch)
        tb.log_value(name='Dev pitch/deg', value=average_error[6], step=epoch)
        tb.log_value(name='Dev yaw/deg', value=average_error[7], step=epoch)

        torch.save(model, save_root_dir + '/' + model_name + '/model.pth')
        print('Model saved at {}/{}/model.pth'.format(save_root_dir, model_name))
Example #14
0
def mode_eval(loader, size_aug):
    # image checker
    check_image = False
    if check_image:
        xyz_thres = 3  # mm
        rpy_thres = 2  # deg
        paths = []  # for display of bad image pairs

    # accuracy-threshold curve
    make_curve = True
    if make_curve:
        xyz_error_max = 10.0  # mm
        xyz_error_reso = 0.01  # mm
        rpy_error_max = 5.0  # deg
        rpy_error_reso = 0.01  # deg

    device = torch.device('cuda')

    model = torch.load(save_root_dir + '/' + model_name + '/model.pth')

    model.eval()
    model.to(device)

    data = [[] for i in range(8)]  # for box plotting
    running_error_test = np.zeros(8)
    start_time = time.time()
    for i, sample in enumerate(loader):

        img_a, img_b, label, img_a_path, img_b_path, label_a_path, label_b_path = sample
        img_a = img_a.to(device)
        img_b = img_b.to(device)
        label = label.to(device)

        output = model(img_a, img_b)
        output = output.cpu().detach().numpy()
        label = label.cpu().detach().numpy()

        # print('output = \n{}\nlabel = \n{}'.format(output, label))

        error = np.zeros(8)
        for j in range(output.shape[0]):

            # print('{} vs {}'.format(output[j], label[j]))

            xyz_error = np.abs(output[j, :3] - label[j, :3]) * 1000
            error[:3] += xyz_error
            # error[:2] += np.abs(output[j, :2] - label[j, :2]
            quat_output = normalize_q(output[j, 3:])
            quat_label = label[j, 3:]

            axis_output, angle_output = axis_angle_from_quat(quat_output)
            axis_label, angle_label = axis_angle_from_quat(quat_label)

            # print('output[j, 3] = {}, label[j, 3] = {}'.format(output[j, 3], label[j, 3]))
            error_mag = np.abs(angle_output - angle_label)
            error_mag = error_mag if error_mag < np.pi else error_mag - np.pi
            error_dir = angle_between_vectors(axis_output, axis_label)
            error_mag = np.rad2deg(np.nan_to_num(error_mag))
            error_dir = np.rad2deg(np.nan_to_num(error_dir))
            error[3] += error_mag
            error[4] += error_dir

            rpy_output = np.array(euler_from_quaternion(quat_output))
            rpy_label = np.array(euler_from_quaternion(quat_label))
            rpy_error = np.rad2deg(np.abs(rpy_output - rpy_label))
            error[5:] += rpy_error

            data[0].append(xyz_error[0])
            data[1].append(xyz_error[1])
            data[2].append(xyz_error[2])
            data[3].append(error_mag)
            data[4].append(error_dir)
            data[5].append(rpy_error[0])
            data[6].append(rpy_error[1])
            data[7].append(rpy_error[2])

            if check_image:
                if np.any(xyz_error > xyz_thres) or np.any(rpy_error > rpy_thres):
                    checker_output = np.ones(8) * -1
                    checker_output[:3] = output[j, :3] * 1000
                    checker_output[5:] = np.rad2deg(rpy_output)

                    checker_label = np.ones(8) * -1
                    checker_label[:3] = label[j, :3] * 1000
                    checker_label[5:] = np.rad2deg(rpy_label)

                    paths.append((img_a_path[j], img_b_path[j], checker_output, checker_label, error))

        running_error_test += error
        error /= output.shape[0]

        print(
            '[EVAL][{}] Batch {}, error: x={}mm,y={}mm,z={}mm,mag={}deg,dir={}deg,roll={}deg,pitch={}deg,yaw={}deg'.format(
                time.time() - start_time, i + 1, *error))

    average_error = running_error_test / test_size_aug
    print(
        'Summary: test_eval: x={:0.2f}mm,y={:0.2f}mm,z={:0.2f}mm,mag={:0.2f}deg,dir={:0.2f}deg,roll={:0.2f}deg,pitch={:0.2f}deg,yaw={:0.2f}deg\n\n'.format(
        *average_error))
    fig1 = plt.figure(0)
    ax11 = fig1.add_subplot(121)
    ax11.set_title('Translation Errors (mm)')
    bp11 = ax11.boxplot(data[:3])
    ax11.set_xticklabels(['x', 'y', 'z'])
    # only show max and min outlier
    for outliers in bp11['fliers']:
        # outliers.set_data([[outliers.get_xdata()[0],outliers.get_xdata()[0]],[np.min(outliers.get_ydata()),‌​np.max(outliers.get_ydata())]])
        outliers.set_data([[outliers.get_xdata()[0]], [[np.max(outliers.get_ydata())]]])

    ax12 = fig1.add_subplot(122)
    ax12.set_title('Rotation Errors (deg)')
    bp12 = ax12.boxplot(data[5:])
    ax12.set_xticklabels(['roll', 'pitch', 'yaw'])
    # only show max and min outlier
    for outliers in bp12['fliers']:
        # outliers.set_data([[outliers.get_xdata()[0],outliers.get_xdata()[0]],[np.min(outliers.get_ydata()),‌​np.max(outliers.get_ydata())]])
        outliers.set_data([[outliers.get_xdata()[0]], [[np.max(outliers.get_ydata())]]])

    plt.savefig(save_root_dir + '/' + model_name + '/error_distribution.png')
    plt.show()

    if check_image:
        idx = 0
        idx_prev = -1
        print(len(paths))
        while paths:

            if idx is not idx_prev:
                idx_prev = idx

                print('img_a: {}, img_b: {}'.format(get_stem(paths[idx][0]), get_stem(paths[idx][1])))
                print('output: {}\nlabel: {}\nerror:{}'.format(paths[idx][2], paths[idx][3], paths[idx][4]))

                img_a = cv2.imread(paths[idx][0])
                img_b = cv2.imread(paths[idx][1])

            cv2.imshow('a', img_a)
            cv2.imshow('b', img_b)

            key = cv2.waitKeyEx(0)

            if key == 97:  # a
                idx -= 1
                idx = max(idx, 0)
            elif key == 100:  # d
                idx += 1
                idx = min(idx, len(paths) - 1)
            elif key == 27:  # exit
                break
            else:
                print('Unknown key: {}'.format(key))

    if make_curve:
        xyz_thres_list = list(np.arange(0, xyz_error_max, xyz_error_reso))
        rpy_thres_list = list(np.arange(0, rpy_error_max, rpy_error_reso))

        x_accuracy_list, x_thres_list = accuracy_thres_curve(data[0], xyz_thres_list)
        y_accuracy_list, y_thres_list = accuracy_thres_curve(data[1], xyz_thres_list)
        z_accuracy_list, z_thres_list = accuracy_thres_curve(data[2], xyz_thres_list)
        ro_accuracy_list, ro_thres_list = accuracy_thres_curve(data[5], rpy_thres_list)
        pi_accuracy_list, pi_thres_list = accuracy_thres_curve(data[6], rpy_thres_list)
        ya_accuracy_list, ya_thres_list = accuracy_thres_curve(data[7], rpy_thres_list)

        fig2 = plt.figure()
        ax21 = fig2.add_subplot(211)
        ax21.set_xlabel('Threshold (mm)')
        ax21.set_ylabel('Fraction of pass')
        lines21 = ax21.plot(x_thres_list, x_accuracy_list, 'r-', y_thres_list, y_accuracy_list, 'g-', z_thres_list,
                  z_accuracy_list, 'b-')
        ax21.set_xticks(np.arange(min(x_thres_list), max(x_thres_list) + 1, 1.0))
        ax21.legend(lines21, ('x', 'y', 'z'))

        ax22 = fig2.add_subplot(212)
        ax22.set_xlabel('Threshold (deg)')
        ax22.set_ylabel('Fraction of pass')
        lines22 = ax22.plot(ro_thres_list, ro_accuracy_list, 'r-', pi_thres_list, pi_accuracy_list, 'g-', ya_thres_list,
                  ya_accuracy_list, 'b-')
        ax22.set_xticks(np.arange(min(ro_thres_list), max(ro_thres_list) + 1, 0.5))
        ax22.legend(lines22, ('roll', 'pitch', 'yaw'))

        plt.tight_layout()
        plt.savefig(save_root_dir + '/' + model_name + '/error_curve.png')
        plt.show()
Example #15
0
def rotation_from_a_to_b(a, b):
    R = rotation_matrix(angle_between_vectors(a, b), vector_product(a,
                                                                    b))[:3, :3]
    # assert np.linalg.norm(R.dot(a)-b) < 1e-4
    return R.astype(np.float32)
Example #16
0
    def do_one_roof_face(self,
                         section_name,
                         face_polygon,
                         high_point_actual,
                         dirstart=None,
                         main_expansion=None):
        """ This is a geometry util func, Roofing will do the stuff.
            order is important. This comment is utter bollocks.
            todo: lape name
        """
        # first lape (xy plane)
        if dirstart is None:
            dirstart = face_polygon[0]
        direction = dirstart.GetVectorTo(face_polygon[1])
        #direction = face_polygon[oin-1].GetVectorTo(face_polygon[oin])
        direction = direction.Normalize(600)
        # fit plane world - roof center
        fit_plane_world = [
            face_polygon[0].Clone(), face_polygon[-1].Clone(),
            face_polygon[0].CopyLinear(0, 0, 1000)
        ]
        #trace("fpw: ", fit_plane_world)
        # now we should project this in actual roof plane (xyz)
        origo = face_polygon[1].Clone()
        Y = origo.GetVectorTo(high_point_actual)
        X = origo.GetVectorTo(face_polygon[2].Clone())
        N = Point3.Cross(X, Y).Normalize()
        trace("norml: ", X, Y, N)
        #dotlen = Point3.Dot(face_polygon[0].GetVectorTo(face_polygon[1]), direction)
        firstside = face_polygon[0].GetVectorTo(face_polygon[1])
        coslen = 600 / math.cos(
            angle_between_vectors(firstside.ToArr(), direction.ToArr()))
        trace("coslen: ", coslen)
        angular = firstside.Clone().Normalize(coslen)
        face_polygon[1].Translate(angular)
        for point in face_polygon[2:-2]:
            # move raystas 600 mm outwards
            # TODO: This shit makes holppa==125.00 mm brake
            point.Translate(direction)
        # todo dry
        lastside = face_polygon[-1].GetVectorTo(face_polygon[-2])
        coslen = 600 / math.cos(
            angle_between_vectors(lastside.ToArr(), direction.ToArr()))
        trace("coslen: ", coslen)
        angular = lastside.Clone().Normalize(coslen)
        face_polygon[-2].Translate(angular)

        # tilt roof plane from xy plane to actual angle
        mat = projection_matrix(origo.ToArr(), N.ToArr(), direction=[0, 0, 1])
        geomPlane = TransformationPlane(origo, X, Y)
        transistor = Transformer(
            geomPlane)  # geom plane is not used in convert_by_matrix
        trace("facepoly:", face_polygon)
        points_in_correct_plane = Transformer.convert_by_matrix(
            face_polygon, mat)
        trace("picp:", points_in_correct_plane)
        # create part data object
        roof_data = _RoofDeck(section_name, geomPlane)
        # now start creating hatch
        local_roof_poly = transistor.convertToLocal(points_in_correct_plane)
        #trace("local pts: ", local_roof_poly)
        holppa = 125.0
        one_face_point_pairs = create_hatch(local_roof_poly, 900.0, holppa,
                                            holppa)
        # convert back to global csys
        for pp in one_face_point_pairs:
            #pp2 = transistor.convertToGlobal(pp)
            pp2 = pp
            roof_data.add_part_data(pp2[0], pp2[1], "50*125", Rotation.FRONT)
        # rimat
        for rr in one_face_point_pairs:
            for point in rr:
                # rimat above the studs
                point.Translate(0, 0, 62.5 + 11)
            #rr2 = transistor.convertToGlobal(rr)
            rr2 = rr
            roof_data.add_part_data(rr2[0], rr2[1], "22*50", Rotation.TOP)
        # then battens
        if main_expansion is None:
            main_expansion = self.default_expander
        main_expansion.apply_expansion(local_roof_poly)
        one_face_batten_pairs = create_hatch(local_roof_poly,
                                             350.0,
                                             first_offset=50 - 22,
                                             horizontal=True)
        # add battens
        for bb in one_face_batten_pairs:
            for point in bb:
                # rimat above the studs
                point.Translate(0, 0, 125 / 2 + 22 + 32 / 2)
            #bb2 = transistor.convertToGlobal(bb)
            bb2 = bb
            #trace(bb2[0], bb2[1], "32*100")
            roof_data.add_part_data(bb2[0], bb2[1], "32*100", Rotation.TOP)
        #decking_profile_half = 20 # todo: educated guess at this juncture
        decking_data, cut_objs, cut_planes, sides = self._generate_roof_deck(
            local_roof_poly, 125 / 2 + 22 + 32)
        # add chimney to cut solids
        local_chimney = None
        if self.chimney_world is not None:
            chimney = get_bounding_lines(self.chimney_world, transistor)
            cut_corners_local = []
            for corner_line in chimney:
                # isect level 62.5 + 22 + 32 ~
                isect = isect_line_plane_v3(corner_line[0].ToArr(),
                                            corner_line[1].ToArr(),
                                            [0, 0, 100])
                if isect is not None:
                    cut_corners_local.append(Point3(isect[0], isect[1], 0))
            if 4 == len(cut_corners_local):
                cut_corners_local[0].z = -200
                cut_corners_local[-1].z = 200
                local_chimney = create_cut_aabb(cut_corners_local)

        fit_plane_data_local = transistor.convertToLocal(fit_plane_world)
        fit_planes = [to_planedef(fit_plane_data_local)]
        roof_data.set_deck_data(decking_data, sides, cut_objs, cut_planes,
                                fit_planes, local_chimney)
        self.roof_decs.append(roof_data)