Example #1
0
def create_attention_mask_from_input_mask(from_tensor, to_mask):
    """Create 3D attention mask from a 2D tensor mask.

  Args:
    from_tensor: 2D or 3D Tensor of shape [batch_size, from_seq_length, ...].
    to_mask: int32 Tensor of shape [batch_size, to_seq_length].

  Returns:
    float Tensor of shape [batch_size, from_seq_length, to_seq_length].
  """
    from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
    batch_size = from_shape[0]
    from_seq_length = from_shape[1]

    to_shape = get_shape_list(to_mask, expected_rank=2)
    to_seq_length = to_shape[1]

    to_mask = tf.cast(tf.reshape(to_mask, [batch_size, 1, to_seq_length]),
                      tf.float32)

    # We don't assume that `from_tensor` is a mask (although it could be). We
    # don't actually care if we attend *from* padding tokens (only *to* padding)
    # tokens so we create a tensor of all ones.
    #
    # `broadcast_ones` = [batch_size, from_seq_length, 1]
    broadcast_ones = tf.ones(shape=[batch_size, from_seq_length, 1],
                             dtype=tf.float32)

    # Here we broadcast along two dimensions to create the mask.
    mask = broadcast_ones * to_mask

    return mask
Example #2
0
def embedding_lookup(input_ids,
                     vocab_size,
                     embedding_size=128,
                     initializer_range=0.02,
                     word_embedding_name="word_embeddings",
                     use_one_hot_embeddings=False):
    """Looks up words embeddings for id tensor.

    Args:
      input_ids: int32 Tensor of shape [batch_size, seq_length] containing word
        ids.
      vocab_size: int. Size of the embedding vocabulary.
      embedding_size: int. Width of the word embeddings.
      initializer_range: float. Embedding initialization range.
      word_embedding_name: string. Name of the embedding table.
      use_one_hot_embeddings: bool. If True, use one-hot method for word
        embeddings. If False, use `tf.gather()`.

    Returns:
      float Tensor of shape [batch_size, seq_length, embedding_size].
    """
    # This function assumes that the input is of shape [batch_size, seq_length,
    # num_inputs].
    #
    # If the input is a 2D tensor of shape [batch_size, seq_length], we
    # reshape to [batch_size, seq_length, 1].
    if input_ids.shape.ndims == 2:
        input_ids = tf.expand_dims(input_ids, axis=[-1])

    embedding_table = tf.get_variable(
        name=word_embedding_name,
        shape=[vocab_size, embedding_size],
        initializer=create_initializer(initializer_range))

    flat_input_ids = tf.reshape(input_ids, [-1])
    if use_one_hot_embeddings:
        one_hot_input_ids = tf.one_hot(flat_input_ids, depth=vocab_size)
        output = tf.matmul(one_hot_input_ids, embedding_table)
    else:
        output = tf.gather(embedding_table, flat_input_ids)

    input_shape = get_shape_list(input_ids)

    output = tf.reshape(output,
                        input_shape[0:-1] + [input_shape[-1] * embedding_size])
    return output, embedding_table
Example #3
0
    def __init__(self,
                 config,
                 is_training,
                 input_ids,
                 input_mask=None,
                 token_type_ids=None,
                 use_one_hot_embeddings=False,
                 scope=None):
        """Constructor for BertModel.

        Args:
          config: `BertConfig` instance.
          is_training: bool. true for training model, false for eval model. Controls
            whether dropout will be applied.
          input_ids: int32 Tensor of shape [batch_size, seq_length].
          input_mask: (optional) int32 Tensor of shape [batch_size, seq_length].
          token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
          use_one_hot_embeddings: (optional) bool. Whether to use one-hot word
            embeddings or tf.embedding_lookup() for the word embeddings.
          scope: (optional) variable scope. Defaults to "bert".

        Raises:
          ValueError: The config is invalid or one of the input tensor shapes
            is invalid.
        """
        config = copy.deepcopy(config)
        if not is_training:
            config.hidden_dropout_prob = 0.0
            config.attention_probs_dropout_prob = 0.0

        input_shape = get_shape_list(input_ids, expected_rank=2)
        batch_size = input_shape[0]
        seq_length = input_shape[1]

        if input_mask is None:
            input_mask = tf.ones(shape=[batch_size, seq_length],
                                 dtype=tf.int32)

        if token_type_ids is None:
            token_type_ids = tf.zeros(shape=[batch_size, seq_length],
                                      dtype=tf.int32)

        with tf.variable_scope(scope, default_name="bert"):

            with tf.variable_scope("embeddings"):
                # Perform embedding lookup on the word ids.
                (self.embedding_output,
                 self.embedding_table) = embedding_lookup(
                     input_ids=input_ids,
                     vocab_size=config.vocab_size,
                     embedding_size=config.hidden_size,
                     initializer_range=config.initializer_range,
                     word_embedding_name="word_embeddings",
                     use_one_hot_embeddings=use_one_hot_embeddings)

                # Add positional embeddings and token type embeddings, then layer
                # normalize and perform dropout.
                self.embedding_output = embedding_postprocessor(
                    input_tensor=self.embedding_output,
                    use_token_type=True,
                    token_type_ids=token_type_ids,
                    token_type_vocab_size=config.type_vocab_size,
                    token_type_embedding_name="token_type_embeddings",
                    use_position_embeddings=True,
                    position_embedding_name="position_embeddings",
                    initializer_range=config.initializer_range,
                    max_position_embeddings=config.max_position_embeddings,
                    dropout_prob=config.hidden_dropout_prob)

            with tf.variable_scope("encoder"):
                # This converts a 2D mask of shape [batch_size, seq_length] to a 3D
                # mask of shape [batch_size, seq_length, seq_length] which is used
                # for the attention scores.
                attention_mask = create_attention_mask_from_input_mask(
                    input_ids, input_mask)

                # Run the stacked transformer.
                # `sequence_output` shape = [batch_size, seq_length, hidden_size].
                self.all_encoder_layers = transformer_model(
                    input_tensor=self.embedding_output,
                    attention_mask=attention_mask,
                    hidden_size=config.hidden_size,
                    num_hidden_layers=config.num_hidden_layers,
                    num_attention_heads=config.num_attention_heads,
                    intermediate_size=config.intermediate_size,
                    intermediate_act_fn=get_activation(config.hidden_act),
                    hidden_dropout_prob=config.hidden_dropout_prob,
                    attention_probs_dropout_prob=config.
                    attention_probs_dropout_prob,
                    initializer_range=config.initializer_range,
                    do_return_all_layers=True)

            self.sequence_output = self.all_encoder_layers[-1]
            # The "pooler" converts the encoded sequence tensor of shape
            # [batch_size, seq_length, hidden_size] to a tensor of shape
            # [batch_size, hidden_size]. This is necessary for segment-level
            # (or segment-pair-level) classification tasks where we need a fixed
            # dimensional representation of the segment.
            with tf.variable_scope("pooler"):
                # We "pool" the model by simply taking the hidden state corresponding
                # to the first token. We assume that this has been pre-trained
                first_token_tensor = tf.squeeze(self.sequence_output[:,
                                                                     0:1, :],
                                                axis=1)
                self.pooled_output = tf.layers.dense(
                    first_token_tensor,
                    config.hidden_size,
                    activation=tf.tanh,
                    kernel_initializer=create_initializer(
                        config.initializer_range))
Example #4
0
def embedding_postprocessor(input_tensor,
                            use_token_type=False,
                            token_type_ids=None,
                            token_type_vocab_size=16,
                            token_type_embedding_name="token_type_embeddings",
                            use_position_embeddings=True,
                            position_embedding_name="position_embeddings",
                            initializer_range=0.02,
                            max_position_embeddings=512,
                            dropout_prob=0.1):
    """Performs various post-processing on a word embedding tensor.

    Args:
      input_tensor: float Tensor of shape [batch_size, seq_length,
        embedding_size].
      use_token_type: bool. Whether to add embeddings for `token_type_ids`.
      token_type_ids: (optional) int32 Tensor of shape [batch_size, seq_length].
        Must be specified if `use_token_type` is True.
      token_type_vocab_size: int. The vocabulary size of `token_type_ids`.
      token_type_embedding_name: string. The name of the embedding table variable
        for token type ids.
      use_position_embeddings: bool. Whether to add position embeddings for the
        position of each token in the sequence.
      position_embedding_name: string. The name of the embedding table variable
        for positional embeddings.
      initializer_range: float. Range of the weight initialization.
      max_position_embeddings: int. Maximum sequence length that might ever be
        used with this model. This can be longer than the sequence length of
        input_tensor, but cannot be shorter.
      dropout_prob: float. Dropout probability applied to the final output tensor.

    Returns:
      float tensor with same shape as `input_tensor`.

    Raises:
      ValueError: One of the tensor shapes or input values is invalid.
    """
    input_shape = get_shape_list(input_tensor, expected_rank=3)
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    width = input_shape[2]

    output = input_tensor

    if use_token_type:
        if token_type_ids is None:
            raise ValueError("`token_type_ids` must be specified if"
                             "`use_token_type` is True.")
        token_type_table = tf.get_variable(
            name=token_type_embedding_name,
            shape=[token_type_vocab_size, width],
            initializer=create_initializer(initializer_range))
        # This vocab will be small so we always do one-hot here, since it is always
        # faster for a small vocabulary.
        flat_token_type_ids = tf.reshape(token_type_ids, [-1])
        one_hot_ids = tf.one_hot(flat_token_type_ids, depth=token_type_vocab_size)
        token_type_embeddings = tf.matmul(one_hot_ids, token_type_table)
        token_type_embeddings = tf.reshape(token_type_embeddings,
                                           [batch_size, seq_length, width])
        output += token_type_embeddings

    if use_position_embeddings:
        assert_op = tf.assert_less_equal(seq_length, max_position_embeddings)
        with tf.control_dependencies([assert_op]):
            full_position_embeddings = tf.get_variable(
                name=position_embedding_name,
                shape=[max_position_embeddings, width],
                initializer=create_initializer(initializer_range))
            # Since the position embedding table is a learned variable, we create it
            # using a (long) sequence length `max_position_embeddings`. The actual
            # sequence length might be shorter than this, for faster training of
            # tasks that do not have long sequences.
            #
            # So `full_position_embeddings` is effectively an embedding table
            # for position [0, 1, 2, ..., max_position_embeddings-1], and the current
            # sequence has positions [0, 1, 2, ... seq_length-1], so we can just
            # perform a slice.
            position_embeddings = tf.slice(full_position_embeddings, [0, 0],
                                           [seq_length, -1])
            num_dims = len(output.shape.as_list())

            # Only the last two dimensions are relevant (`seq_length` and `width`), so
            # we broadcast among the first dimensions, which is typically just
            # the batch size.
            position_broadcast_shape = []
            for _ in range(num_dims - 2):
                position_broadcast_shape.append(1)
            position_broadcast_shape.extend([seq_length, width])
            position_embeddings = tf.reshape(position_embeddings,
                                             position_broadcast_shape)
            output += position_embeddings

    output = layer_norm_and_dropout(output, dropout_prob)
    return output
Example #5
0
def attention_layer(from_tensor,
                    to_tensor,
                    attention_mask=None,
                    num_attention_heads=1,
                    size_per_head=512,
                    query_act=None,
                    key_act=None,
                    value_act=None,
                    attention_probs_dropout_prob=0.0,
                    initializer_range=0.02,
                    do_return_2d_tensor=False,
                    batch_size=None,
                    from_seq_length=None,
                    to_seq_length=None):
    """Performs multi-headed attention from `from_tensor` to `to_tensor`.

  This is an implementation of multi-headed attention based on "Attention
  is all you Need". If `from_tensor` and `to_tensor` are the same, then
  this is self-attention. Each timestep in `from_tensor` attends to the
  corresponding sequence in `to_tensor`, and returns a fixed-with vector.

  This function first projects `from_tensor` into a "query" tensor and
  `to_tensor` into "key" and "value" tensors. These are (effectively) a list
  of tensors of length `num_attention_heads`, where each tensor is of shape
  [batch_size, seq_length, size_per_head].

  Then, the query and key tensors are dot-producted and scaled. These are
  softmaxed to obtain attention probabilities. The value tensors are then
  interpolated by these probabilities, then concatenated back to a single
  tensor and returned.

  In practice, the multi-headed attention are done with transposes and
  reshapes rather than actual separate tensors.

  Args:
    from_tensor: float Tensor of shape [batch_size, from_seq_length,
      from_width].
    to_tensor: float Tensor of shape [batch_size, to_seq_length, to_width].
    attention_mask: (optional) int32 Tensor of shape [batch_size,
      from_seq_length, to_seq_length]. The values should be 1 or 0. The
      attention scores will effectively be set to -infinity for any positions in
      the mask that are 0, and will be unchanged for positions that are 1.
    num_attention_heads: int. Number of attention heads.
    size_per_head: int. Size of each attention head.
    query_act: (optional) Activation function for the query transform.
    key_act: (optional) Activation function for the key transform.
    value_act: (optional) Activation function for the value transform.
    attention_probs_dropout_prob: (optional) float. Dropout probability of the
      attention probabilities.
    initializer_range: float. Range of the weight initializer.
    do_return_2d_tensor: bool. If True, the output will be of shape [batch_size
      * from_seq_length, num_attention_heads * size_per_head]. If False, the
      output will be of shape [batch_size, from_seq_length, num_attention_heads
      * size_per_head].
    batch_size: (Optional) int. If the input is 2D, this might be the batch size
      of the 3D version of the `from_tensor` and `to_tensor`.
    from_seq_length: (Optional) If the input is 2D, this might be the seq length
      of the 3D version of the `from_tensor`.
    to_seq_length: (Optional) If the input is 2D, this might be the seq length
      of the 3D version of the `to_tensor`.

  Returns:
    float Tensor of shape [batch_size, from_seq_length,
      num_attention_heads * size_per_head]. (If `do_return_2d_tensor` is
      true, this will be of shape [batch_size * from_seq_length,
      num_attention_heads * size_per_head]).

  Raises:
    ValueError: Any of the arguments or tensor shapes are invalid.
  """
    def transpose_for_scores(input_tensor, batch_size, num_attention_heads,
                             seq_length, width):
        output_tensor = tf.reshape(
            input_tensor, [batch_size, seq_length, num_attention_heads, width])

        output_tensor = tf.transpose(output_tensor, [0, 2, 1, 3])
        return output_tensor

    from_shape = get_shape_list(from_tensor, expected_rank=[2, 3])
    to_shape = get_shape_list(to_tensor, expected_rank=[2, 3])

    if len(from_shape) != len(to_shape):
        raise ValueError(
            "The rank of `from_tensor` must match the rank of `to_tensor`.")

    if len(from_shape) == 3:
        batch_size = from_shape[0]
        from_seq_length = from_shape[1]
        to_seq_length = to_shape[1]
    elif len(from_shape) == 2:
        if (batch_size is None or from_seq_length is None
                or to_seq_length is None):
            raise ValueError(
                "When passing in rank 2 tensors to attention_layer, the values "
                "for `batch_size`, `from_seq_length`, and `to_seq_length` "
                "must all be specified.")

    # Scalar dimensions referenced here:
    #   B = batch size (number of sequences)
    #   F = `from_tensor` sequence length
    #   T = `to_tensor` sequence length
    #   N = `num_attention_heads`
    #   H = `size_per_head`

    from_tensor_2d = reshape_to_matrix(from_tensor)
    to_tensor_2d = reshape_to_matrix(to_tensor)

    # `query_layer` = [B*F, N*H]
    query_layer = tf.layers.dense(
        from_tensor_2d,
        num_attention_heads * size_per_head,
        activation=query_act,
        name="query",
        kernel_initializer=create_initializer(initializer_range))

    # `key_layer` = [B*T, N*H]
    key_layer = tf.layers.dense(
        to_tensor_2d,
        num_attention_heads * size_per_head,
        activation=key_act,
        name="key",
        kernel_initializer=create_initializer(initializer_range))

    # `value_layer` = [B*T, N*H]
    value_layer = tf.layers.dense(
        to_tensor_2d,
        num_attention_heads * size_per_head,
        activation=value_act,
        name="value",
        kernel_initializer=create_initializer(initializer_range))

    # `query_layer` = [B, N, F, H]
    query_layer = transpose_for_scores(query_layer, batch_size,
                                       num_attention_heads, from_seq_length,
                                       size_per_head)

    # `key_layer` = [B, N, T, H]
    key_layer = transpose_for_scores(key_layer, batch_size,
                                     num_attention_heads, to_seq_length,
                                     size_per_head)

    # Take the dot product between "query" and "key" to get the raw
    # attention scores.
    # `attention_scores` = [B, N, F, T]
    attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
    attention_scores = tf.multiply(attention_scores,
                                   1.0 / math.sqrt(float(size_per_head)))

    if attention_mask is not None:
        # `attention_mask` = [B, 1, F, T]
        attention_mask = tf.expand_dims(attention_mask, axis=[1])

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        adder = (1.0 - tf.cast(attention_mask, tf.float32)) * -10000.0

        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
        attention_scores += adder

    # Normalize the attention scores to probabilities.
    # `attention_probs` = [B, N, F, T]
    attention_probs = tf.nn.softmax(attention_scores)

    # This is actually dropping out entire tokens to attend to, which might
    # seem a bit unusual, but is taken from the original Transformer paper.
    attention_probs = dropout(attention_probs, attention_probs_dropout_prob)

    # `value_layer` = [B, T, N, H]
    value_layer = tf.reshape(
        value_layer,
        [batch_size, to_seq_length, num_attention_heads, size_per_head])

    # `value_layer` = [B, N, T, H]
    value_layer = tf.transpose(value_layer, [0, 2, 1, 3])

    # `context_layer` = [B, N, F, H]
    context_layer = tf.matmul(attention_probs, value_layer)

    # `context_layer` = [B, F, N, H]
    context_layer = tf.transpose(context_layer, [0, 2, 1, 3])

    if do_return_2d_tensor:
        # `context_layer` = [B*F, N*H]
        context_layer = tf.reshape(context_layer, [
            batch_size * from_seq_length, num_attention_heads * size_per_head
        ])
    else:
        # `context_layer` = [B, F, N*H]
        context_layer = tf.reshape(
            context_layer,
            [batch_size, from_seq_length, num_attention_heads * size_per_head])

    return context_layer
Example #6
0
def transformer_model(input_tensor,
                      attention_mask=None,
                      hidden_size=768,
                      num_hidden_layers=12,
                      num_attention_heads=12,
                      intermediate_size=3072,
                      intermediate_act_fn=gelu,
                      hidden_dropout_prob=0.1,
                      attention_probs_dropout_prob=0.1,
                      initializer_range=0.02,
                      do_return_all_layers=False):
    """Multi-headed, multi-layer Transformer from "Attention is All You Need".

  This is almost an exact implementation of the original Transformer encoder.

  See the original paper:
  https://arxiv.org/abs/1706.03762

  Also see:
  https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/models/transformer.py

  Args:
    input_tensor: float Tensor of shape [batch_size, seq_length, hidden_size].
    attention_mask: (optional) int32 Tensor of shape [batch_size, seq_length,
      seq_length], with 1 for positions that can be attended to and 0 in
      positions that should not be.
    hidden_size: int. Hidden size of the Transformer.
    num_hidden_layers: int. Number of layers (blocks) in the Transformer.
    num_attention_heads: int. Number of attention heads in the Transformer.
    intermediate_size: int. The size of the "intermediate" (a.k.a., feed
      forward) layer.
    intermediate_act_fn: function. The non-linear activation function to apply
      to the output of the intermediate/feed-forward layer.
    hidden_dropout_prob: float. Dropout probability for the hidden layers.
    attention_probs_dropout_prob: float. Dropout probability of the attention
      probabilities.
    initializer_range: float. Range of the initializer (stddev of truncated
      normal).
    do_return_all_layers: Whether to also return all layers or just the final
      layer.

  Returns:
    float Tensor of shape [batch_size, seq_length, hidden_size], the final
    hidden layer of the Transformer.

  Raises:
    ValueError: A Tensor shape or parameter is invalid.
  """
    if hidden_size % num_attention_heads != 0:
        raise ValueError(
            "The hidden size (%d) is not a multiple of the number of attention "
            "heads (%d)" % (hidden_size, num_attention_heads))

    attention_head_size = int(hidden_size / num_attention_heads)
    input_shape = get_shape_list(input_tensor, expected_rank=3)
    batch_size = input_shape[0]
    seq_length = input_shape[1]
    input_width = input_shape[2]

    # The Transformer performs sum residuals on all layers so the input needs
    # to be the same as the hidden size.
    if input_width != hidden_size:
        raise ValueError(
            "The width of the input tensor (%d) != hidden size (%d)" %
            (input_width, hidden_size))

    # We keep the representation as a 2D tensor to avoid re-shaping it back and
    # forth from a 3D tensor to a 2D tensor. Re-shapes are normally free on
    # the GPU/CPU but may not be free on the TPU, so we want to minimize them to
    # help the optimizer.
    prev_output = reshape_to_matrix(input_tensor)

    all_layer_outputs = []
    for layer_idx in range(num_hidden_layers):
        with tf.variable_scope("layer_%d" % layer_idx):
            layer_input = prev_output

            with tf.variable_scope("attention"):
                attention_heads = []
                with tf.variable_scope("self"):
                    attention_head = attention_layer(
                        from_tensor=layer_input,
                        to_tensor=layer_input,
                        attention_mask=attention_mask,
                        num_attention_heads=num_attention_heads,
                        size_per_head=attention_head_size,
                        attention_probs_dropout_prob=
                        attention_probs_dropout_prob,
                        initializer_range=initializer_range,
                        do_return_2d_tensor=True,
                        batch_size=batch_size,
                        from_seq_length=seq_length,
                        to_seq_length=seq_length)
                    attention_heads.append(attention_head)

                attention_output = None
                if len(attention_heads) == 1:
                    attention_output = attention_heads[0]
                else:
                    # In the case where we have other sequences, we just concatenate
                    # them to the self-attention head before the projection.
                    attention_output = tf.concat(attention_heads, axis=-1)

                # Run a linear projection of `hidden_size` then add a residual
                # with `layer_input`.
                with tf.variable_scope("output"):
                    attention_output = tf.layers.dense(
                        attention_output,
                        hidden_size,
                        kernel_initializer=create_initializer(
                            initializer_range))
                    attention_output = dropout(attention_output,
                                               hidden_dropout_prob)
                    attention_output = layer_norm(attention_output +
                                                  layer_input)

            # The activation is only applied to the "intermediate" hidden layer.
            with tf.variable_scope("intermediate"):
                intermediate_output = tf.layers.dense(
                    attention_output,
                    intermediate_size,
                    activation=intermediate_act_fn,
                    kernel_initializer=create_initializer(initializer_range))

            # Down-project back to `hidden_size` then add the residual.
            with tf.variable_scope("output"):
                layer_output = tf.layers.dense(
                    intermediate_output,
                    hidden_size,
                    kernel_initializer=create_initializer(initializer_range))
                layer_output = dropout(layer_output, hidden_dropout_prob)
                layer_output = layer_norm(layer_output + attention_output)
                prev_output = layer_output
                all_layer_outputs.append(layer_output)

    if do_return_all_layers:
        final_outputs = []
        for layer_output in all_layer_outputs:
            final_output = reshape_from_matrix(layer_output, input_shape)
            final_outputs.append(final_output)
        return final_outputs
    else:
        final_output = reshape_from_matrix(prev_output, input_shape)
        return final_output