Example #1
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments,
                               TrainingArguments, MultiLingAdapterArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args, adapter_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args, adapter_args = parser.parse_args_into_dataclasses(
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset("glue",
                                    data_args.task_name,
                                    cache_dir=model_args.cache_dir)
    elif data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(data_args.dataset_name,
                                    data_args.dataset_config_name,
                                    cache_dir=model_args.cache_dir)
    else:
        # Loading a dataset from your local files.
        # CSV/JSON training and evaluation files are needed.
        data_files = {
            "train": data_args.train_file,
            "validation": data_args.validation_file
        }

        # Get the test dataset: you can provide your own CSV/JSON test file (see below)
        # when you use `do_predict` without specifying a GLUE benchmark task.
        if training_args.do_predict:
            if data_args.test_file is not None:
                train_extension = data_args.train_file.split(".")[-1]
                test_extension = data_args.test_file.split(".")[-1]
                assert (
                    test_extension == train_extension
                ), "`test_file` should have the same extension (csv or json) as `train_file`."
                data_files["test"] = data_args.test_file
            else:
                raise ValueError(
                    "Need either a GLUE task or a test file for `do_predict`.")

        for key in data_files.keys():
            logger.info(f"load a local file for {key}: {data_files[key]}")

        if data_args.train_file.endswith(".csv"):
            # Loading a dataset from local csv files
            raw_datasets = load_dataset("csv",
                                        data_files=data_files,
                                        cache_dir=model_args.cache_dir)
        else:
            # Loading a dataset from local json files
            raw_datasets = load_dataset("json",
                                        data_files=data_files,
                                        cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
            label_list = raw_datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = raw_datasets["train"].features["label"].dtype in [
            "float32", "float64"
        ]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = raw_datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSequenceClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Setup adapters
    if adapter_args.train_adapter:
        task_name = data_args.task_name or "glue"
        # check if adapter already exists, otherwise add it
        if task_name not in model.config.adapters:
            # resolve the adapter config
            adapter_config = AdapterConfig.load(
                adapter_args.adapter_config,
                non_linearity=adapter_args.adapter_non_linearity,
                reduction_factor=adapter_args.adapter_reduction_factor,
            )
            # load a pre-trained from Hub if specified
            if adapter_args.load_adapter:
                model.load_adapter(
                    adapter_args.load_adapter,
                    config=adapter_config,
                    load_as=task_name,
                )
            # otherwise, add a fresh adapter
            else:
                model.add_adapter(task_name, config=adapter_config)
        # optionally load a pre-trained language adapter
        if adapter_args.load_lang_adapter:
            # resolve the language adapter config
            lang_adapter_config = AdapterConfig.load(
                adapter_args.lang_adapter_config,
                non_linearity=adapter_args.lang_adapter_non_linearity,
                reduction_factor=adapter_args.lang_adapter_reduction_factor,
            )
            # load the language adapter from Hub
            lang_adapter_name = model.load_adapter(
                adapter_args.load_lang_adapter,
                config=lang_adapter_config,
                load_as=adapter_args.language,
            )
        else:
            lang_adapter_name = None
        # Freeze all model weights except of those of this adapter
        model.train_adapter([task_name])
        # Set the adapters to be used in every forward pass
        if lang_adapter_name:
            model.set_active_adapters(ac.Stack(lang_adapter_name, task_name))
        else:
            model.set_active_adapters([task_name])
    else:
        if adapter_args.load_adapter or adapter_args.load_lang_adapter:
            raise ValueError(
                "Adapters can only be loaded in adapters training mode."
                "Use --train_adapter to enable adapter training")

    # Preprocessing the datasets
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [
            name for name in raw_datasets["train"].column_names
            if name != "label"
        ]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (model.config.label2id !=
            PretrainedConfig(num_labels=num_labels).label2id
            and data_args.task_name is not None and not is_regression):
        # Some have all caps in their config, some don't.
        label_name_to_id = {
            k.lower(): v
            for k, v in model.config.label2id.items()
        }
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
            label_to_id = {
                i: int(label_name_to_id[label_list[i]])
                for i in range(num_labels)
            }
        else:
            logger.warning(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
    elif data_args.task_name is None and not is_regression:
        label_to_id = {v: i for i, v in enumerate(label_list)}

    if label_to_id is not None:
        model.config.label2id = label_to_id
        model.config.id2label = {
            id: label
            for label, id in config.label2id.items()
        }
    elif data_args.task_name is not None and not is_regression:
        model.config.label2id = {l: i for i, l in enumerate(label_list)}
        model.config.id2label = {
            id: label
            for label, id in config.label2id.items()
        }

    if data_args.max_seq_length > tokenizer.model_max_length:
        logger.warning(
            f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
            f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
        )
    max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    def preprocess_function(examples):
        # Tokenize the texts
        args = ((examples[sentence1_key], ) if sentence2_key is None else
                (examples[sentence1_key], examples[sentence2_key]))
        result = tokenizer(*args,
                           padding=padding,
                           max_length=max_seq_length,
                           truncation=True)

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
            result["label"] = [(label_to_id[l] if l != -1 else -1)
                               for l in examples["label"]]
        return result

    with training_args.main_process_first(desc="dataset map pre-processing"):
        raw_datasets = raw_datasets.map(
            preprocess_function,
            batched=True,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on dataset",
        )
    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(
                range(data_args.max_train_samples))

    if training_args.do_eval:
        if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation_matched" if data_args.
                                    task_name == "mnli" else "validation"]
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(
                range(data_args.max_eval_samples))

    if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
        if "test" not in raw_datasets and "test_matched" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = raw_datasets["test_matched" if data_args.task_name ==
                                       "mnli" else "test"]
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(
                range(data_args.max_predict_samples))

    # Log a few random samples from the training set:
    if training_args.do_train:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(
                f"Sample {index} of the training set: {train_dataset[index]}.")

    # Get the metric function
    if data_args.task_name is not None:
        metric = load_metric("glue", data_args.task_name)
    else:
        metric = load_metric("accuracy")

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions,
                                               tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds,
                                                                  axis=1)
        if data_args.task_name is not None:
            result = metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(
                    result.values())).item()
            return result
        elif is_regression:
            return {"mse": ((preds - p.label_ids)**2).mean().item()}
        else:
            return {
                "accuracy":
                (preds == p.label_ids).astype(np.float32).mean().item()
            }

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer,
                                                pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer_class = AdapterTrainer if adapter_args.train_adapter else Trainer
    trainer = trainer_class(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.save_model()  # Saves the tokenizer too for easy upload

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
            tasks.append("mnli-mm")
            eval_datasets.append(raw_datasets["validation_mismatched"])

        for eval_dataset, task in zip(eval_datasets, tasks):
            metrics = trainer.evaluate(eval_dataset=eval_dataset)

            max_eval_samples = (data_args.max_eval_samples
                                if data_args.max_eval_samples is not None else
                                len(eval_dataset))
            metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

            trainer.log_metrics("eval", metrics)
            trainer.save_metrics("eval", metrics)

    if training_args.do_predict:
        logger.info("*** Predict ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
        predict_datasets = [predict_dataset]
        if data_args.task_name == "mnli":
            tasks.append("mnli-mm")
            predict_datasets.append(raw_datasets["test_mismatched"])

        for predict_dataset, task in zip(predict_datasets, tasks):
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
            predict_dataset = predict_dataset.remove_columns("label")
            predictions = trainer.predict(
                predict_dataset, metric_key_prefix="predict").predictions
            predictions = np.squeeze(
                predictions) if is_regression else np.argmax(predictions,
                                                             axis=1)

            output_predict_file = os.path.join(training_args.output_dir,
                                               f"predict_results_{task}.txt")
            if trainer.is_world_process_zero():
                with open(output_predict_file, "w") as writer:
                    logger.info(f"***** Predict results {task} *****")
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
                        else:
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")

    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "text-classification"
    }
    if data_args.task_name is not None:
        kwargs["language"] = "en"
        kwargs["dataset_tags"] = "glue"
        kwargs["dataset_args"] = data_args.task_name
        kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Example #2
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments,
         MultiLingAdapterArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args, adapter_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args, adapter_args = parser.parse_args_into_dataclasses(
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    if data_args.source_prefix is None and model_args.model_name_or_path in [
            "t5-small",
            "t5-base",
            "t5-large",
            "t5-3b",
            "t5-11b",
    ]:
        logger.warning(
            "You're running a t5 model but didn't provide a source prefix, which is expected, e.g. with "
            "`--source_prefix 'translate English to German: ' `")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For translation, only JSON files are supported, with one field named "translation" containing two keys for the
    # source and target languages (unless you adapt what follows).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(data_args.dataset_name,
                                    data_args.dataset_config_name,
                                    cache_dir=model_args.cache_dir)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
            extension = data_args.test_file.split(".")[-1]
        raw_datasets = load_dataset(extension,
                                    data_files=data_files,
                                    cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    model.resize_token_embeddings(len(tokenizer))

    # Set decoder_start_token_id
    if model.config.decoder_start_token_id is None and isinstance(
            tokenizer, (MBartTokenizer, MBartTokenizerFast)):
        if isinstance(tokenizer, MBartTokenizer):
            model.config.decoder_start_token_id = tokenizer.lang_code_to_id[
                data_args.target_lang]
        else:
            model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(
                data_args.target_lang)

    if model.config.decoder_start_token_id is None:
        raise ValueError(
            "Make sure that `config.decoder_start_token_id` is correctly defined"
        )

    # Setup adapters
    if adapter_args.train_adapter:
        task_name = data_args.source_lang.split(
            "_")[0] + "_" + data_args.target_lang.split("_")[0]
        # check if adapter already exists, otherwise add it
        if task_name not in model.config.adapters:
            # resolve the adapter config
            adapter_config = AdapterConfig.load(
                adapter_args.adapter_config,
                non_linearity=adapter_args.adapter_non_linearity,
                reduction_factor=adapter_args.adapter_reduction_factor,
            )
            # load a pre-trained from Hub if specified
            if adapter_args.load_adapter:
                model.load_adapter(
                    adapter_args.load_adapter,
                    config=adapter_config,
                    load_as=task_name,
                )
            # otherwise, add a fresh adapter
            else:
                model.add_adapter(task_name, config=adapter_config)
        # optionally load a pre-trained language adapter
        if adapter_args.load_lang_adapter:
            # resolve the language adapter config
            lang_adapter_config = AdapterConfig.load(
                adapter_args.lang_adapter_config,
                non_linearity=adapter_args.lang_adapter_non_linearity,
                reduction_factor=adapter_args.lang_adapter_reduction_factor,
            )
            # load the language adapter from Hub
            lang_adapter_name = model.load_adapter(
                adapter_args.load_lang_adapter,
                config=lang_adapter_config,
                load_as=adapter_args.language,
            )
        else:
            lang_adapter_name = None
        # Freeze all model weights except of those of this adapter
        model.train_adapter([task_name])
        # Set the adapters to be used in every forward pass
        if lang_adapter_name:
            model.set_active_adapters(ac.Stack(lang_adapter_name, task_name))
        else:
            model.set_active_adapters([task_name])
    else:
        if adapter_args.load_adapter or adapter_args.load_lang_adapter:
            raise ValueError(
                "Adapters can only be loaded in adapters training mode."
                "Use --train_adapter to enable adapter training")

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    elif training_args.do_eval:
        column_names = raw_datasets["validation"].column_names
    elif training_args.do_predict:
        column_names = raw_datasets["test"].column_names
    else:
        logger.info(
            "There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`."
        )
        return

    # For translation we set the codes of our source and target languages (only useful for mBART, the others will
    # ignore those attributes).
    if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
        assert data_args.target_lang is not None and data_args.source_lang is not None, (
            f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
            "--target_lang arguments.")

        tokenizer.src_lang = data_args.source_lang
        tokenizer.tgt_lang = data_args.target_lang

        # For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
        # as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
        forced_bos_token_id = (
            tokenizer.lang_code_to_id[data_args.forced_bos_token]
            if data_args.forced_bos_token is not None else None)
        model.config.forced_bos_token_id = forced_bos_token_id

    # Get the language codes for input/target.
    source_lang = data_args.source_lang.split("_")[0]
    target_lang = data_args.target_lang.split("_")[0]

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length
    padding = "max_length" if data_args.pad_to_max_length else False

    if training_args.label_smoothing_factor > 0 and not hasattr(
            model, "prepare_decoder_input_ids_from_labels"):
        logger.warning(
            "label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for"
            f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
        )

    def preprocess_function(examples):
        inputs = [ex[source_lang] for ex in examples["translation"]]
        targets = [ex[target_lang] for ex in examples["translation"]]
        inputs = [prefix + inp for inp in inputs]
        model_inputs = tokenizer(inputs,
                                 max_length=data_args.max_source_length,
                                 padding=padding,
                                 truncation=True)

        # Setup the tokenizer for targets
        with tokenizer.as_target_tokenizer():
            labels = tokenizer(targets,
                               max_length=max_target_length,
                               padding=padding,
                               truncation=True)

        # If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
        # padding in the loss.
        if padding == "max_length" and data_args.ignore_pad_token_for_loss:
            labels["input_ids"] = [[
                (l if l != tokenizer.pad_token_id else -100) for l in label
            ] for label in labels["input_ids"]]

        model_inputs["labels"] = labels["input_ids"]
        return model_inputs

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(
                range(data_args.max_train_samples))
        with training_args.main_process_first(
                desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(
                range(data_args.max_eval_samples))
        with training_args.main_process_first(
                desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )

    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = raw_datasets["test"]
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(
                range(data_args.max_predict_samples))
        with training_args.main_process_first(
                desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )

    # Data collator
    label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    else:
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            model=model,
            label_pad_token_id=label_pad_token_id,
            pad_to_multiple_of=8 if training_args.fp16 else None,
        )

    # Metric
    metric = load_metric("sacrebleu")

    def postprocess_text(preds, labels):
        preds = [pred.strip() for pred in preds]
        labels = [[label.strip()] for label in labels]

        return preds, labels

    def compute_metrics(eval_preds):
        preds, labels = eval_preds
        if isinstance(preds, tuple):
            preds = preds[0]
        decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
        if data_args.ignore_pad_token_for_loss:
            # Replace -100 in the labels as we can't decode them.
            labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(labels,
                                                skip_special_tokens=True)

        # Some simple post-processing
        decoded_preds, decoded_labels = postprocess_text(
            decoded_preds, decoded_labels)

        result = metric.compute(predictions=decoded_preds,
                                references=decoded_labels)
        result = {"bleu": result["score"]}

        prediction_lens = [
            np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds
        ]
        result["gen_len"] = np.mean(prediction_lens)
        result = {k: round(v, 4) for k, v in result.items()}
        return result

    # Early stopping
    if data_args.patience and data_args.patience > 0:
        training_args.load_best_model_at_end = True

    # Initialize our Trainer
    trainer_class = Seq2SeqAdapterTrainer if adapter_args.train_adapter else Seq2SeqTrainer
    trainer = trainer_class(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics
        if training_args.predict_with_generate else None,
    )
    if data_args.patience and data_args.patience > 0:
        callback = EarlyStoppingCallback(
            early_stopping_patience=data_args.patience)
        trainer.add_callback(callback)

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload

        metrics = train_result.metrics
        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    results = {}
    max_length = (training_args.generation_max_length
                  if training_args.generation_max_length is not None else
                  data_args.val_max_target_length)
    num_beams = data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate(max_length=max_length,
                                   num_beams=num_beams,
                                   metric_key_prefix="eval")
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    if training_args.do_predict:
        logger.info("*** Predict ***")

        predict_results = trainer.predict(predict_dataset,
                                          metric_key_prefix="predict",
                                          max_length=max_length,
                                          num_beams=num_beams)
        metrics = predict_results.metrics
        max_predict_samples = (data_args.max_predict_samples
                               if data_args.max_predict_samples is not None
                               else len(predict_dataset))
        metrics["predict_samples"] = min(max_predict_samples,
                                         len(predict_dataset))

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

        if trainer.is_world_process_zero():
            if training_args.predict_with_generate:
                predictions = tokenizer.batch_decode(
                    predict_results.predictions,
                    skip_special_tokens=True,
                    clean_up_tokenization_spaces=True)
                predictions = [pred.strip() for pred in predictions]
                output_prediction_file = os.path.join(
                    training_args.output_dir, "generated_predictions.txt")
                with open(output_prediction_file, "w",
                          encoding="utf-8") as writer:
                    writer.write("\n".join(predictions))

    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "translation"
    }
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs[
                "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    languages = [
        l for l in [data_args.source_lang, data_args.target_lang]
        if l is not None
    ]
    if len(languages) > 0:
        kwargs["language"] = languages

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)

    return results
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments,
                               TrainingArguments, MultiLingAdapterArguments))

    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args, adapter_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args, adapter_args = parser.parse_args_into_dataclasses(
        )

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. "
            "Use --overwrite_output_dir to overcome.")

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO
        if is_main_process(training_args.local_rank) else logging.WARN,
    )

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
    logger.info(f"Training/evaluation parameters {training_args}")

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
    # sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
    # label if at least two columns are provided.
    #
    # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
    # single column. You can easily tweak this behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.task_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset("glue", data_args.task_name)
    elif data_args.train_file.endswith(".csv"):
        # Loading a dataset from local csv files
        datasets = load_dataset("csv",
                                data_files={
                                    "train": data_args.train_file,
                                    "validation": data_args.validation_file
                                })
    else:
        # Loading a dataset from local json files
        datasets = load_dataset("json",
                                data_files={
                                    "train": data_args.train_file,
                                    "validation": data_args.validation_file
                                })
    # See more about loading any type of standard or custom dataset at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Labels
    label_list = None
    if data_args.task_name is not None:
        is_regression = data_args.task_name == "stsb"
        if not is_regression:
            label_list = datasets["train"].features["label"].names
            num_labels = len(label_list)
        else:
            num_labels = 1
    else:
        # Trying to have good defaults here, don't hesitate to tweak to your needs.
        is_regression = datasets["train"].features["label"].dtype in [
            "float32", "float64"
        ]
        if is_regression:
            num_labels = 1
        else:
            # A useful fast method:
            # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
            label_list = datasets["train"].unique("label")
            label_list.sort()  # Let's sort it for determinism
            num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
    )
    # We use the AutoModelWithHeads class here for better adapter support.
    model = AutoModelWithHeads.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
    )
    model.add_classification_head(
        data_args.task_name or "glue",
        num_labels=num_labels,
        id2label={i: v
                  for i, v in enumerate(label_list)}
        if num_labels > 0 else None,
    )

    # Setup adapters
    if adapter_args.train_adapter:
        task_name = data_args.task_name or "glue"
        # check if adapter already exists, otherwise add it
        if task_name not in model.config.adapters:
            # resolve the adapter config
            adapter_config = AdapterConfig.load(
                adapter_args.adapter_config,
                non_linearity=adapter_args.adapter_non_linearity,
                reduction_factor=adapter_args.adapter_reduction_factor,
            )
            # load a pre-trained from Hub if specified
            if adapter_args.load_adapter:
                model.load_adapter(
                    adapter_args.load_adapter,
                    config=adapter_config,
                    load_as=task_name,
                )
            # otherwise, add a fresh adapter
            else:
                model.add_adapter(task_name, config=adapter_config)
        # optionally load a pre-trained language adapter
        if adapter_args.load_lang_adapter:
            # resolve the language adapter config
            lang_adapter_config = AdapterConfig.load(
                adapter_args.lang_adapter_config,
                non_linearity=adapter_args.lang_adapter_non_linearity,
                reduction_factor=adapter_args.lang_adapter_reduction_factor,
            )
            # load the language adapter from Hub
            lang_adapter_name = model.load_adapter(
                adapter_args.load_lang_adapter,
                config=lang_adapter_config,
                load_as=adapter_args.language,
            )
        else:
            lang_adapter_name = None
        # Freeze all model weights except of those of this adapter
        model.train_adapter([task_name])
        # Set the adapters to be used in every forward pass
        if lang_adapter_name:
            model.set_active_adapters(ac.Stack(lang_adapter_name, task_name))
        else:
            model.set_active_adapters(task_name)
    else:
        if adapter_args.load_adapter or adapter_args.load_lang_adapter:
            raise ValueError(
                "Adapters can only be loaded in adapters training mode."
                "Use --train_adapter to enable adapter training")

    # Preprocessing the datasets
    if data_args.task_name is not None:
        sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
    else:
        # Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
        non_label_column_names = [
            name for name in datasets["train"].column_names if name != "label"
        ]
        if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
            sentence1_key, sentence2_key = "sentence1", "sentence2"
        else:
            if len(non_label_column_names) >= 2:
                sentence1_key, sentence2_key = non_label_column_names[:2]
            else:
                sentence1_key, sentence2_key = non_label_column_names[0], None

    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
        max_length = data_args.max_seq_length
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False
        max_length = None

    # Some models have set the order of the labels to use, so let's make sure we do use it.
    label_to_id = None
    if (model.config.label2id !=
            PretrainedConfig(num_labels=num_labels).label2id
            and data_args.task_name is not None and is_regression):
        # Some have all caps in their config, some don't.
        label_name_to_id = {
            k.lower(): v
            for k, v in model.config.label2id.items()
        }
        if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
            label_to_id = {
                i: label_name_to_id[label_list[i]]
                for i in range(num_labels)
            }
        else:
            logger.warn(
                "Your model seems to have been trained with labels, but they don't match the dataset: ",
                f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
                "\nIgnoring the model labels as a result.",
            )
    elif data_args.task_name is None:
        label_to_id = {v: i for i, v in enumerate(label_list)}

    def preprocess_function(examples):
        # Tokenize the texts
        args = ((examples[sentence1_key], ) if sentence2_key is None else
                (examples[sentence1_key], examples[sentence2_key]))
        result = tokenizer(*args,
                           padding=padding,
                           max_length=max_length,
                           truncation=True)

        # Map labels to IDs (not necessary for GLUE tasks)
        if label_to_id is not None and "label" in examples:
            result["label"] = [label_to_id[l] for l in examples["label"]]
        return result

    datasets = datasets.map(preprocess_function,
                            batched=True,
                            load_from_cache_file=not data_args.overwrite_cache)

    train_dataset = datasets["train"]
    eval_dataset = datasets["validation_matched" if data_args.task_name ==
                            "mnli" else "validation"]
    if data_args.task_name is not None:
        test_dataset = datasets["test_matched" if data_args.task_name ==
                                "mnli" else "test"]

    # Log a few random samples from the training set:
    for index in random.sample(range(len(train_dataset)), 3):
        logger.info(
            f"Sample {index} of the training set: {train_dataset[index]}.")

    # Get the metric function
    if data_args.task_name is not None:
        metric = load_metric("glue", data_args.task_name)
    # TODO: When datasets metrics include regular accuracy, make an else here and remove special branch from
    # compute_metrics

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions,
                                               tuple) else p.predictions
        preds = np.squeeze(preds) if is_regression else np.argmax(preds,
                                                                  axis=1)
        if data_args.task_name is not None:
            result = metric.compute(predictions=preds, references=p.label_ids)
            if len(result) > 1:
                result["combined_score"] = np.mean(list(
                    result.values())).item()
            return result
        elif is_regression:
            return {"mse": ((preds - p.label_ids)**2).mean().item()}
        else:
            return {
                "accuracy":
                (preds == p.label_ids).astype(np.float32).mean().item()
            }

    # Initialize our Trainer
    trainer_class = AdapterTrainer if adapter_args.train_adapter else Trainer
    trainer = trainer_class(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
        data_collator=default_data_collator
        if data_args.pad_to_max_length else None,
    )

    # Training
    if training_args.do_train:
        trainer.train(model_path=model_args.model_name_or_path if os.path.
                      isdir(model_args.model_name_or_path) else None)
        trainer.save_model()  # Saves the tokenizer too for easy upload

    # Evaluation
    eval_results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
        eval_datasets = [eval_dataset]
        if data_args.task_name == "mnli":
            tasks.append("mnli-mm")
            eval_datasets.append(datasets["validation_mismatched"])

        for eval_dataset, task in zip(eval_datasets, tasks):
            eval_result = trainer.evaluate(eval_dataset=eval_dataset)

            output_eval_file = os.path.join(training_args.output_dir,
                                            f"eval_results_{task}.txt")
            if trainer.is_world_process_zero():
                with open(output_eval_file, "w") as writer:
                    logger.info(f"***** Eval results {task} *****")
                    for key, value in eval_result.items():
                        logger.info(f"  {key} = {value}")
                        writer.write(f"{key} = {value}\n")

            eval_results.update(eval_result)

    if training_args.do_predict:
        logger.info("*** Test ***")

        # Loop to handle MNLI double evaluation (matched, mis-matched)
        tasks = [data_args.task_name]
        test_datasets = [test_dataset]
        if data_args.task_name == "mnli":
            tasks.append("mnli-mm")
            test_datasets.append(datasets["test_mismatched"])

        for test_dataset, task in zip(test_datasets, tasks):
            # Removing the `label` columns because it contains -1 and Trainer won't like that.
            test_dataset.remove_columns_("label")
            predictions = trainer.predict(
                test_dataset=test_dataset).predictions
            predictions = np.squeeze(
                predictions) if is_regression else np.argmax(predictions,
                                                             axis=1)

            output_test_file = os.path.join(training_args.output_dir,
                                            f"test_results_{task}.txt")
            if trainer.is_world_process_zero():
                with open(output_test_file, "w") as writer:
                    logger.info(f"***** Test results {task} *****")
                    writer.write("index\tprediction\n")
                    for index, item in enumerate(predictions):
                        if is_regression:
                            writer.write(f"{index}\t{item:3.3f}\n")
                        else:
                            item = label_list[item]
                            writer.write(f"{index}\t{item}\n")
    return eval_results
Example #4
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments,
                               TrainingArguments, MultiLingAdapterArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args, adapter_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args, adapter_args = parser.parse_args_into_dataclasses(
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(data_args.dataset_name,
                                    data_args.dataset_config_name,
                                    cache_dir=model_args.cache_dir)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension,
                                    data_files=data_files,
                                    cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
        features = raw_datasets["train"].features
    else:
        column_names = raw_datasets["validation"].column_names
        features = raw_datasets["validation"].features

    if data_args.text_column_name is not None:
        text_column_name = data_args.text_column_name
    elif "tokens" in column_names:
        text_column_name = "tokens"
    else:
        text_column_name = column_names[0]

    if data_args.label_column_name is not None:
        label_column_name = data_args.label_column_name
    elif f"{data_args.task_name}_tags" in column_names:
        label_column_name = f"{data_args.task_name}_tags"
    else:
        label_column_name = column_names[1]

    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(raw_datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        label2id=label_to_id,
        id2label={i: l
                  for l, i in label_to_id.items()},
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    tokenizer_name_or_path = model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path
    if config.model_type in {"gpt2", "roberta"}:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
            add_prefix_space=True,
        )
    else:
        tokenizer = AutoTokenizer.from_pretrained(
            tokenizer_name_or_path,
            cache_dir=model_args.cache_dir,
            use_fast=True,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )

    model = AutoModelForTokenClassification.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Setup adapters
    if adapter_args.train_adapter:
        task_name = data_args.dataset_name or "ner"
        # check if adapter already exists, otherwise add it
        if task_name not in model.config.adapters:
            # resolve the adapter config
            adapter_config = AdapterConfig.load(
                adapter_args.adapter_config,
                non_linearity=adapter_args.adapter_non_linearity,
                reduction_factor=adapter_args.adapter_reduction_factor,
            )
            # load a pre-trained from Hub if specified
            if adapter_args.load_adapter:
                model.load_adapter(
                    adapter_args.load_adapter,
                    config=adapter_config,
                    load_as=task_name,
                )
            # otherwise, add a fresh adapter
            else:
                model.add_adapter(task_name, config=adapter_config)
        # optionally load a pre-trained language adapter
        if adapter_args.load_lang_adapter:
            # resolve the language adapter config
            lang_adapter_config = AdapterConfig.load(
                adapter_args.lang_adapter_config,
                non_linearity=adapter_args.lang_adapter_non_linearity,
                reduction_factor=adapter_args.lang_adapter_reduction_factor,
            )
            # load the language adapter from Hub
            lang_adapter_name = model.load_adapter(
                adapter_args.load_lang_adapter,
                config=lang_adapter_config,
                load_as=adapter_args.language,
            )
        else:
            lang_adapter_name = None
        # Freeze all model weights except of those of this adapter
        model.train_adapter([task_name])
        # Set the adapters to be used in every forward pass
        if lang_adapter_name:
            model.set_active_adapters(ac.Stack(lang_adapter_name, task_name))
        else:
            model.set_active_adapters([task_name])
    else:
        if adapter_args.load_adapter or adapter_args.load_lang_adapter:
            raise ValueError(
                "Adapters can only be loaded in adapters training mode."
                "Use --train_adapter to enable adapter training")

    # Tokenizer check: this script requires a fast tokenizer.
    if not isinstance(tokenizer, PreTrainedTokenizerFast):
        raise ValueError(
            "This example script only works for models that have a fast tokenizer. Checkout the big table of models "
            "at https://huggingface.co/transformers/index.html#supported-frameworks to find the model types that meet this "
            "requirement")

    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
            max_length=data_args.max_seq_length,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
        )
        labels = []
        for i, label in enumerate(examples[label_column_name]):
            word_ids = tokenized_inputs.word_ids(batch_index=i)
            previous_word_idx = None
            label_ids = []
            for word_idx in word_ids:
                # Special tokens have a word id that is None. We set the label to -100 so they are automatically
                # ignored in the loss function.
                if word_idx is None:
                    label_ids.append(-100)
                # We set the label for the first token of each word.
                elif word_idx != previous_word_idx:
                    label_ids.append(label_to_id[label[word_idx]])
                # For the other tokens in a word, we set the label to either the current label or -100, depending on
                # the label_all_tokens flag.
                else:
                    label_ids.append(label_to_id[label[word_idx]] if data_args.
                                     label_all_tokens else -100)
                previous_word_idx = word_idx

            labels.append(label_ids)
        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(
                range(data_args.max_train_samples))
        with training_args.main_process_first(
                desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )

    if training_args.do_eval:
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(
                range(data_args.max_eval_samples))
        with training_args.main_process_first(
                desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )

    if training_args.do_predict:
        if "test" not in raw_datasets:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = raw_datasets["test"]
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(
                range(data_args.max_predict_samples))
        with training_args.main_process_first(
                desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                tokenize_and_align_labels,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )

    # Data collator
    data_collator = DataCollatorForTokenClassification(
        tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)

    # Metrics
    metric = load_metric("seqeval")

    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)

        # Remove ignored index (special tokens)
        true_predictions = [[
            label_list[p] for (p, l) in zip(prediction, label) if l != -100
        ] for prediction, label in zip(predictions, labels)]
        true_labels = [[
            label_list[l] for (p, l) in zip(prediction, label) if l != -100
        ] for prediction, label in zip(predictions, labels)]

        results = metric.compute(predictions=true_predictions,
                                 references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }

    # Initialize our Trainer
    trainer_class = AdapterTrainer if adapter_args.train_adapter else Trainer
    trainer = trainer_class(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        metrics = train_result.metrics
        trainer.save_model()  # Saves the tokenizer too for easy upload

        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate()

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Predict
    if training_args.do_predict:
        logger.info("*** Predict ***")

        predictions, labels, metrics = trainer.predict(
            predict_dataset, metric_key_prefix="predict")
        predictions = np.argmax(predictions, axis=2)

        # Remove ignored index (special tokens)
        true_predictions = [[
            label_list[p] for (p, l) in zip(prediction, label) if l != -100
        ] for prediction, label in zip(predictions, labels)]

        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)

        # Save predictions
        output_predictions_file = os.path.join(training_args.output_dir,
                                               "predictions.txt")
        if trainer.is_world_process_zero():
            with open(output_predictions_file, "w") as writer:
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")

    kwargs = {
        "finetuned_from": model_args.model_name_or_path,
        "tasks": "token-classification"
    }
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs[
                "dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Example #5
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments,
                               TrainingArguments, MultiLingAdapterArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args, adapter_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args, adapter_args = parser.parse_args_into_dataclasses(
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(
            training_args.output_dir
    ) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).

    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).

    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.train_file is not None or data_args.validation_file is not None:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        extension = data_args.train_file.split(".")[-1]
        raw_datasets = load_dataset(extension,
                                    data_files=data_files,
                                    cache_dir=model_args.cache_dir)
    else:
        # Downloading and loading the swag dataset from the hub.
        raw_datasets = load_dataset("swag",
                                    "regular",
                                    cache_dir=model_args.cache_dir)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer

    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )
    model = AutoModelForMultipleChoice.from_pretrained(
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
        config=config,
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
    )

    # Setup adapters
    if adapter_args.train_adapter:
        task_name = "swag"
        # check if adapter already exists otherwise add it
        if task_name not in model.config.adapters:
            # resolve adapter config
            adapter_config = AdapterConfig.load(
                adapter_args.adapter_config,
                non_linearity=adapter_args.adapter_non_linearity,
                reduction_factor=adapter_args.adapter_reduction_factor,
            )
            # load adapter from hub if specified
            if adapter_args.load_adapter:
                model.load_adapter(adapter_args.load_adapter,
                                   config=adapter_config,
                                   load_as=task_name)
            else:
                model.add_adapter(task_name, config=adapter_config)
        # optionally load  a pretrained language adapter
        if adapter_args.load_lang_adapter:
            # resolve language adapter config
            lang_adapter_config = AdapterConfig.load(
                adapter_args.lang_adapter_config,
                non_linearity=adapter_args.lang_adapter_non_linearity,
                reduction_factor=adapter_args.lang_adapter_reduction_factor,
            )
            # load language adapter from Hub
            lang_adapter_name = model.load_adapter(
                adapter_args.load_lang_adapter,
                config=lang_adapter_config,
                load_as=adapter_args.language,
            )
        else:
            lang_adapter_name = None
        # Freeze all model weights except of those in this adapter
        model.train_adapter(task_name)
        # Set the adapters to be used in every forward pass
        if lang_adapter_name:
            model.set_active_adapters(ac.Stack(lang_adapter_name, task_name))
        else:
            model.set_active_adapters(task_name)
    else:
        if adapter_args.load_adapter or adapter_args.load_lang_adapter:
            raise ValueError(
                "Adapters can only be loaded in adapters training mode."
                "Use --train_adapter to enable adapter_training")

    # When using your own dataset or a different dataset from swag, you will probably need to change this.
    ending_names = [f"ending{i}" for i in range(4)]
    context_name = "sent1"
    question_header_name = "sent2"

    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
            logger.warning(
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length,
                             tokenizer.model_max_length)

    # Preprocessing the datasets.
    def preprocess_function(examples):
        first_sentences = [[context] * 4 for context in examples[context_name]]
        question_headers = examples[question_header_name]
        second_sentences = [[
            f"{header} {examples[end][i]}" for end in ending_names
        ] for i, header in enumerate(question_headers)]

        # Flatten out
        first_sentences = sum(first_sentences, [])
        second_sentences = sum(second_sentences, [])

        # Tokenize
        tokenized_examples = tokenizer(
            first_sentences,
            second_sentences,
            truncation=True,
            max_length=max_seq_length,
            padding="max_length" if data_args.pad_to_max_length else False,
        )
        # Un-flatten
        return {
            k: [v[i:i + 4] for i in range(0, len(v), 4)]
            for k, v in tokenized_examples.items()
        }

    if training_args.do_train:
        if "train" not in raw_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = raw_datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(
                range(data_args.max_train_samples))
        with training_args.main_process_first(
                desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
            )

    if training_args.do_eval:
        if "validation" not in raw_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = raw_datasets["validation"]
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(
                range(data_args.max_eval_samples))
        with training_args.main_process_first(
                desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
            )

    # Data collator
    data_collator = (default_data_collator if data_args.pad_to_max_length else
                     DataCollatorForMultipleChoice(
                         tokenizer=tokenizer,
                         pad_to_multiple_of=8 if training_args.fp16 else None))

    # Metric
    def compute_metrics(eval_predictions):
        predictions, label_ids = eval_predictions
        preds = np.argmax(predictions, axis=1)
        return {
            "accuracy": (preds == label_ids).astype(np.float32).mean().item()
        }

    # Initialize our Trainer
    trainer_class = AdapterTrainer if adapter_args.train_adapter else Trainer
    trainer = trainer_class(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload
        metrics = train_result.metrics

        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate()
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(
            eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    kwargs = dict(
        finetuned_from=model_args.model_name_or_path,
        tasks="multiple-choice",
        dataset_tags="swag",
        dataset_args="regular",
        dataset="SWAG",
        language="en",
    )

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Example #6
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, MultiLingAdapterArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args, adapter_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1])
        )
    else:
        model_args, data_args, training_args, adapter_args = parser.parse_args_into_dataclasses()

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
    # behavior (see below)
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        raw_datasets = load_dataset(
            data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir
        )
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            raw_datasets["train"] = load_dataset(
                data_args.dataset_name,
                data_args.dataset_config_name,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
            extension = data_args.train_file.split(".")[-1]
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
            extension = data_args.validation_file.split(".")[-1]
        if extension == "txt":
            extension = "text"
        raw_datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)

        # If no validation data is there, validation_split_percentage will be used to divide the dataset.
        if "validation" not in raw_datasets.keys():
            raw_datasets["validation"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[:{data_args.validation_split_percentage}%]",
                cache_dir=model_args.cache_dir,
            )
            raw_datasets["train"] = load_dataset(
                extension,
                data_files=data_files,
                split=f"train[{data_args.validation_split_percentage}%:]",
                cache_dir=model_args.cache_dir,
            )

    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Load pretrained model and tokenizer
    #
    # Distributed training:
    # The .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
    config_kwargs = {
        "cache_dir": model_args.cache_dir,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.config_name:
        config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
    elif model_args.model_name_or_path:
        config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
    else:
        config = CONFIG_MAPPING[model_args.model_type]()
        logger.warning("You are instantiating a new config instance from scratch.")
        if model_args.config_overrides is not None:
            logger.info(f"Overriding config: {model_args.config_overrides}")
            config.update_from_string(model_args.config_overrides)

    tokenizer_kwargs = {
        "cache_dir": model_args.cache_dir,
        "use_fast": model_args.use_fast_tokenizer,
        "revision": model_args.model_revision,
        "use_auth_token": True if model_args.use_auth_token else None,
    }
    if model_args.tokenizer_name:
        tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
    elif model_args.model_name_or_path:
        tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
    else:
        raise ValueError(
            "You are instantiating a new tokenizer from scratch. This is not supported by this script."
            "You can do it from another script, save it, and load it from here, using --tokenizer_name."
        )

    if model_args.model_name_or_path:
        model = AutoModelForMaskedLM.from_pretrained(
            model_args.model_name_or_path,
            from_tf=bool(".ckpt" in model_args.model_name_or_path),
            config=config,
            cache_dir=model_args.cache_dir,
            revision=model_args.model_revision,
            use_auth_token=True if model_args.use_auth_token else None,
        )
    else:
        logger.info("Training new model from scratch")
        model = AutoModelForMaskedLM.from_config(config)

    model.resize_token_embeddings(len(tokenizer))

    # Setup adapters
    if adapter_args.train_adapter:
        task_name = data_args.dataset_name or "mlm"
        # check if adapter already exists, otherwise add it
        if task_name not in model.config.adapters:
            # resolve the adapter config
            adapter_config = AdapterConfig.load(
                adapter_args.adapter_config,
                non_linearity=adapter_args.adapter_non_linearity,
                reduction_factor=adapter_args.adapter_reduction_factor,
            )
            # load a pre-trained from Hub if specified
            if adapter_args.load_adapter:
                model.load_adapter(
                    adapter_args.load_adapter,
                    config=adapter_config,
                    load_as=task_name,
                )
            # otherwise, add a fresh adapter
            else:
                model.add_adapter(task_name, config=adapter_config)
        # optionally load a pre-trained language adapter
        if adapter_args.load_lang_adapter:
            # resolve the language adapter config
            lang_adapter_config = AdapterConfig.load(
                adapter_args.lang_adapter_config,
                non_linearity=adapter_args.lang_adapter_non_linearity,
                reduction_factor=adapter_args.lang_adapter_reduction_factor,
            )
            # load the language adapter from Hub
            lang_adapter_name = model.load_adapter(
                adapter_args.load_lang_adapter,
                config=lang_adapter_config,
                load_as=adapter_args.language,
            )
        else:
            lang_adapter_name = None
        # Freeze all model weights except of those of this adapter
        model.train_adapter([task_name])
        # Set the adapters to be used in every forward pass
        if lang_adapter_name:
            model.set_active_adapters(ac.Stack(lang_adapter_name, task_name))
        else:
            model.set_active_adapters(task_name)
    else:
        if adapter_args.load_adapter or adapter_args.load_lang_adapter:
            raise ValueError(
                "Adapters can only be loaded in adapters training mode."
                "Use --train_adapter to enable adapter training"
            )

    # Preprocessing the datasets.
    # First we tokenize all the texts.
    if training_args.do_train:
        column_names = raw_datasets["train"].column_names
    else:
        column_names = raw_datasets["validation"].column_names
    text_column_name = "text" if "text" in column_names else column_names[0]

    if data_args.max_seq_length is None:
        max_seq_length = tokenizer.model_max_length
        if max_seq_length > 1024:
            logger.warning(
                f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
                "Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
            )
            max_seq_length = 1024
    else:
        if data_args.max_seq_length > tokenizer.model_max_length:
            logger.warning(
                f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
                f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
            )
        max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)

    if data_args.line_by_line:
        # When using line_by_line, we just tokenize each nonempty line.
        padding = "max_length" if data_args.pad_to_max_length else False

        def tokenize_function(examples):
            # Remove empty lines
            examples[text_column_name] = [
                line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
            ]
            return tokenizer(
                examples[text_column_name],
                padding=padding,
                truncation=True,
                max_length=max_seq_length,
                # We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
                # receives the `special_tokens_mask`.
                return_special_tokens_mask=True,
            )

        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=[text_column_name],
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on dataset line_by_line",
            )
    else:
        # Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
        # We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
        # efficient when it receives the `special_tokens_mask`.
        def tokenize_function(examples):
            return tokenizer(examples[text_column_name], return_special_tokens_mask=True)

        with training_args.main_process_first(desc="dataset map tokenization"):
            tokenized_datasets = raw_datasets.map(
                tokenize_function,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                remove_columns=column_names,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on every text in dataset",
            )

        # Main data processing function that will concatenate all texts from our dataset and generate chunks of
        # max_seq_length.
        def group_texts(examples):
            # Concatenate all texts.
            concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
            total_length = len(concatenated_examples[list(examples.keys())[0]])
            # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
            # customize this part to your needs.
            if total_length >= max_seq_length:
                total_length = (total_length // max_seq_length) * max_seq_length
            # Split by chunks of max_len.
            result = {
                k: [t[i : i + max_seq_length] for i in range(0, total_length, max_seq_length)]
                for k, t in concatenated_examples.items()
            }
            return result

        # Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
        # remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
        # might be slower to preprocess.
        #
        # To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
        # https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map

        with training_args.main_process_first(desc="grouping texts together"):
            tokenized_datasets = tokenized_datasets.map(
                group_texts,
                batched=True,
                num_proc=data_args.preprocessing_num_workers,
                load_from_cache_file=not data_args.overwrite_cache,
                desc=f"Grouping texts in chunks of {max_seq_length}",
            )

    if training_args.do_train:
        if "train" not in tokenized_datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = tokenized_datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))

    if training_args.do_eval:
        if "validation" not in tokenized_datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = tokenized_datasets["validation"]
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))

    # Data collator
    # This one will take care of randomly masking the tokens.
    pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm_probability=data_args.mlm_probability,
        pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
    )

    # Initialize our Trainer
    trainer_class = AdapterTrainer if adapter_args.train_adapter else Trainer
    trainer = trainer_class(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )

    # Training
    if training_args.do_train:
        checkpoint = None
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        trainer.save_model()  # Saves the tokenizer too for easy upload
        metrics = train_result.metrics

        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate()

        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
        try:
            perplexity = math.exp(metrics["eval_loss"])
        except OverflowError:
            perplexity = float("inf")
        metrics["perplexity"] = perplexity

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "fill-mask"}
    if data_args.dataset_name is not None:
        kwargs["dataset_tags"] = data_args.dataset_name
        if data_args.dataset_config_name is not None:
            kwargs["dataset_args"] = data_args.dataset_config_name
            kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
        else:
            kwargs["dataset"] = data_args.dataset_name

    if training_args.push_to_hub:
        trainer.push_to_hub(**kwargs)
    else:
        trainer.create_model_card(**kwargs)
Example #7
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments,
                               UDTrainingArguments, MultiLingAdapterArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args, adapter_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        (
            model_args,
            data_args,
            training_args,
            adapter_args,
        ) = parser.parse_args_into_dataclasses()

    if (os.path.exists(training_args.output_dir)
            and os.listdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty. Use --overwrite_output_dir to overcome."
        )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO
        if training_args.local_rank in [-1, 0] else logging.WARN,
    )
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        training_args.local_rank,
        training_args.device,
        training_args.n_gpu,
        bool(training_args.local_rank != -1),
        training_args.fp16,
    )
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed
    set_seed(training_args.seed)

    # Prepare for UD dependency parsing task
    labels = UD_HEAD_LABELS
    label_map: Dict[int, str] = {i: label for i, label in enumerate(labels)}
    num_labels = len(labels)

    config = AutoConfig.from_pretrained(
        model_args.config_name
        if model_args.config_name else model_args.model_name_or_path,
        num_labels=num_labels,
        id2label=label_map,
        label2id={label: i
                  for i, label in enumerate(labels)},
        cache_dir=model_args.cache_dir,
        pad_token_id=-1,
    )

    if model_args.is_japanese:
        assert model_args.mecab_dir is not None
        assert model_args.mecab_dic_dir is not None

    tokenizer = AutoTokenizer.from_pretrained(
        model_args.tokenizer_name
        if model_args.tokenizer_name else model_args.model_name_or_path,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast,
        do_lower_case=model_args.do_lower_case,
        add_prefix_space=True,  # Used e.g. for RoBERTa
        mecab_kwargs={
            "mecab_option":
            f"-r {model_args.mecab_dir} -d {model_args.mecab_dic_dir}"
        } if model_args.is_japanese else None,
    )

    # The task name (with prefix)
    task_name = "ud_" + data_args.task_name
    language = adapter_args.language

    model = AutoModelWithHeads.from_pretrained(
        model_args.model_name_or_path,
        config=config,
        cache_dir=model_args.cache_dir,
    )
    model.add_dependency_parsing_head(
        task_name,
        num_labels=num_labels,
        id2label=label_map,
    )

    if model_args.leave_out_twelvth:
        logger.info("Leaving out 12")
        leave_out = [11]
    else:
        leave_out = []

    # Setup adapters
    if adapter_args.train_adapter:
        # check if adapter already exists, otherwise add it
        if task_name not in model.config.adapters:
            # resolve the adapter config
            adapter_config = AdapterConfig.load(
                adapter_args.adapter_config,
                non_linearity=adapter_args.adapter_non_linearity,
                reduction_factor=adapter_args.adapter_reduction_factor,
                leave_out=leave_out,
            )
            # load a pre-trained from Hub if specified
            if adapter_args.load_adapter:
                model.load_adapter(
                    adapter_args.load_adapter,
                    config=adapter_config,
                    load_as=task_name,
                    leave_out=leave_out,
                )
            # otherwise, add a fresh adapter
            else:
                model.add_adapter(task_name, config=adapter_config)
        # optionally load a pre-trained language adapter
        if adapter_args.load_lang_adapter:
            # resolve the language adapter config
            lang_adapter_config = AdapterConfig.load(
                adapter_args.lang_adapter_config,
                non_linearity=adapter_args.lang_adapter_non_linearity,
                reduction_factor=adapter_args.lang_adapter_reduction_factor,
                leave_out=leave_out,
            )
            # load the language adapter from Hub
            lang_adapter_name = model.load_adapter(
                adapter_args.load_lang_adapter,
                config=lang_adapter_config,
                load_as=adapter_args.language,
                leave_out=leave_out,
            )
        else:
            lang_adapter_name = None
        # Freeze all model weights except of those of this adapter
        model.train_adapter([task_name])
        # Set the adapters to be used in every forward pass
        if lang_adapter_name:
            model.set_active_adapters(ac.Stack(lang_adapter_name, task_name))
        else:
            model.set_active_adapters(task_name)
    else:
        if adapter_args.load_adapter or adapter_args.load_lang_adapter:
            raise ValueError(
                "Adapters can only be loaded in adapters training mode."
                "Use --train_adapter to enable adapter training")

    # Load and preprocess dataset
    dataset = load_dataset("universal_dependencies", data_args.task_name)
    dataset = preprocess_dataset(dataset,
                                 tokenizer,
                                 labels,
                                 data_args,
                                 pad_token_id=-1)

    # Initialize our Trainer
    # HACK: Set this attribute to False to prevent label columns from being deleted
    training_args.remove_unused_columns = False
    trainer_class = DependencyParsingAdapterTrainer if adapter_args.train_adapter else DependencyParsingTrainer
    trainer = trainer_class(
        model=model,
        args=training_args,
        train_dataset=dataset["train"],
        eval_dataset=dataset["validation"],
    )

    # Training
    if training_args.do_train:
        trainer.train(model_path=model_args.model_name_or_path if os.path.
                      isdir(model_args.model_name_or_path) else None)
        trainer.save_model()
        # For convenience, we also re-save the tokenizer to the same directory,
        # so that you can share your model easily on huggingface.co/models =)
        if trainer.is_world_process_zero():
            tokenizer.save_pretrained(training_args.output_dir)

    # Evaluation
    results = {}
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        result = trainer.evaluate()

        output_eval_file = os.path.join(training_args.output_dir,
                                        "eval_results.txt")
        if trainer.is_world_process_zero():
            with open(output_eval_file, "w") as writer:
                logger.info("***** Eval results *****")
                for key, value in result.items():
                    logger.info("  %s = %s", key, value)
                    writer.write("%s = %s\n" % (key, value))

            results.update(result)

    # Predict
    if training_args.do_predict:
        logging.info("*** Test ***")

        if training_args.store_best_model:
            logger.info("Loading best model for predictions.")

            if adapter_args.train_adapter:
                if language:
                    lang_adapter_config = AdapterConfig.load(
                        config="pfeiffer",
                        non_linearity="gelu",
                        reduction_factor=2,
                        leave_out=leave_out)
                    model.load_adapter(
                        os.path.join(training_args.output_dir, "best_model",
                                     language) if training_args.do_train else
                        adapter_args.load_lang_adapter,
                        config=lang_adapter_config,
                        load_as=language,
                        leave_out=leave_out,
                    )
                task_adapter_config = AdapterConfig.load(config="pfeiffer",
                                                         non_linearity="gelu",
                                                         reduction_factor=16,
                                                         leave_out=leave_out)
                model.load_adapter(
                    os.path.join(training_args.output_dir, "best_model",
                                 task_name)
                    if training_args.do_train else adapter_args.load_adapter,
                    config=task_adapter_config,
                    load_as=task_name,
                    leave_out=leave_out,
                )
                if language:
                    model.set_active_adapters(
                        ac.Stack(lang_adapter_name, task_name))
                else:
                    model.set_active_adapters(task_name)
                model.to(training_args.device)
            else:
                trainer.model = AutoModelWithHeads.from_pretrained(
                    os.path.join(training_args.output_dir, "best_model"),
                    from_tf=bool(".ckpt" in model_args.model_name_or_path),
                    config=config,
                    cache_dir=model_args.cache_dir,
                ).to(training_args.device)

        predictions, _, metrics = trainer.predict(dataset["test"])

        output_test_results_file = os.path.join(training_args.output_dir,
                                                "test_results.txt")
        if trainer.is_world_process_zero():
            with open(output_test_results_file, "w") as writer:
                for key, value in metrics.items():
                    logger.info("  %s = %s", key, value)
                    writer.write("%s = %s\n" % (key, value))

    return results