Example #1
0
    def create_and_check_lxmert_model(
        self,
        config,
        input_ids,
        visual_feats,
        bounding_boxes,
        token_type_ids,
        input_mask,
        obj_labels,
        masked_lm_labels,
        matched_label,
        ans,
        output_attentions,
    ):
        model = TFLxmertModel(config=config)
        result = model(
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids=token_type_ids,
            attention_mask=input_mask,
            output_attentions=output_attentions,
        )
        result = model(
            input_ids,
            visual_feats,
            bounding_boxes,
            token_type_ids=token_type_ids,
            attention_mask=input_mask,
            output_attentions=not output_attentions,
        )
        result = model(input_ids,
                       visual_feats,
                       bounding_boxes,
                       return_dict=False)
        result = model(input_ids,
                       visual_feats,
                       bounding_boxes,
                       return_dict=True)

        self.parent.assertEqual(
            result.language_output.shape,
            (self.batch_size, self.seq_length, self.hidden_size))
        self.parent.assertEqual(
            result.vision_output.shape,
            (self.batch_size, self.num_visual_features, self.hidden_size))
        self.parent.assertEqual(result.pooled_output.shape,
                                (self.batch_size, self.hidden_size))
Example #2
0
 def test_model_from_pretrained(self):
     for model_name in ["unc-nlp/lxmert-base-uncased"]:
         model = TFLxmertModel.from_pretrained(model_name)
         self.assertIsNotNone(model)