def create_and_check_electra_for_pretraining(
     self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
 ):
     model = TFElectraForPreTraining(config=config)
     inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
     result = model(inputs)
     self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
    def test_inference_masked_lm(self):
        model = TFElectraForPreTraining.from_pretrained("lysandre/tiny-electra-random")
        input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
        output = model(input_ids)[0]

        expected_shape = [1, 6]
        self.assertEqual(output.shape, expected_shape)

        print(output[:, :3])

        expected_slice = tf.constant([[-0.24651965, 0.8835437, 1.823782]])
        tf.debugging.assert_near(output[:, :3], expected_slice, atol=1e-4)