Example #1
0
    def train(self, model_path=None, dev_objective=None):
        """
        Main training entry point.

        The training logic is directly borrowed from transformers.Trainer (version 3.0.2).
        Add early stopping.
        """
        self.best_dir = None
        self.objective = -float("inf")
        self.dev_objective = dev_objective if dev_objective is not None else default_dev_objective

        # Data loading.
        train_dataloader = self.get_train_dataloader()
        num_update_steps_per_epoch = len(
            train_dataloader) // self.args.gradient_accumulation_steps
        if num_update_steps_per_epoch == 0:
            num_update_steps_per_epoch = 1
        if self.args.max_steps > 0:
            t_total = self.args.max_steps
            num_train_epochs = self.args.max_steps // num_update_steps_per_epoch + int(
                self.args.max_steps % num_update_steps_per_epoch > 0)
        else:
            t_total = int(
                len(train_dataloader) //
                self.args.gradient_accumulation_steps *
                self.args.num_train_epochs)
            num_train_epochs = self.args.num_train_epochs

        self.create_optimizer_and_scheduler(num_training_steps=t_total)
        optimizer = self.optimizer
        scheduler = self.lr_scheduler

        # Check if saved optimizer or scheduler states exist
        if (model_path is not None
                and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
                and os.path.isfile(os.path.join(model_path, "scheduler.pt"))):
            # Load in optimizer and scheduler states
            optimizer.load_state_dict(
                torch.load(os.path.join(model_path, "optimizer.pt"),
                           map_location=self.args.device))
            scheduler.load_state_dict(
                torch.load(os.path.join(model_path, "scheduler.pt")))

        model = self.model

        if self.args.fp16 and _use_apex:
            if not transformers.is_apex_available():
                raise ImportError(
                    "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
                )
            model, optimizer = amp.initialize(
                model, optimizer, opt_level=self.args.fp16_opt_level)

        # Multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Distributed training (should be after apex fp16 initialization)
        if self.args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=True,
            )

        # Train
        if transformers.is_torch_tpu_available():
            total_train_batch_size = self.args.train_batch_size * xm.xrt_world_size(
            )
        else:
            total_train_batch_size = (self.args.train_batch_size *
                                      self.args.gradient_accumulation_steps *
                                      (torch.distributed.get_world_size()
                                       if self.args.local_rank != -1 else 1))
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", self.num_examples(train_dataloader))
        logger.info("  Num Epochs = %d", num_train_epochs)
        logger.info("  Instantaneous batch size per device = %d",
                    self.args.per_device_train_batch_size)
        logger.info(
            "  Total train batch size (w. parallel, distributed & accumulation) = %d",
            total_train_batch_size)
        logger.info("  Gradient Accumulation steps = %d",
                    self.args.gradient_accumulation_steps)
        logger.info("  Total optimization steps = %d", t_total)

        self.global_step = 0
        self.epoch = 0
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        # Check if continuing training from a checkpoint
        if model_path is not None:
            # set global_step to global_step of last saved checkpoint from model path
            try:
                self.global_step = int(model_path.split("-")[-1].split("/")[0])
                epochs_trained = self.global_step // (
                    len(train_dataloader) //
                    self.args.gradient_accumulation_steps)
                steps_trained_in_current_epoch = self.global_step % (
                    len(train_dataloader) //
                    self.args.gradient_accumulation_steps)

                logger.info(
                    "  Continuing training from checkpoint, will skip to saved global_step"
                )
                logger.info("  Continuing training from epoch %d",
                            epochs_trained)
                logger.info("  Continuing training from global step %d",
                            self.global_step)
                logger.info(
                    "  Will skip the first %d steps in the first epoch",
                    steps_trained_in_current_epoch)
            except ValueError:
                self.global_step = 0
                logger.info("  Starting fine-tuning.")

        tr_loss = torch.tensor(0.0).to(self.args.device)
        logging_loss_scalar = 0.0
        model.zero_grad()
        train_iterator = trange(epochs_trained,
                                int(num_train_epochs),
                                desc="Epoch",
                                disable=not self.is_local_master())
        for epoch in train_iterator:
            if isinstance(train_dataloader, DataLoader) and isinstance(
                    train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)

            if transformers.is_torch_tpu_available():
                parallel_loader = pl.ParallelLoader(
                    train_dataloader,
                    [self.args.device]).per_device_loader(self.args.device)
                epoch_iterator = tqdm(parallel_loader,
                                      desc="Iteration",
                                      disable=not self.is_local_master())
            else:
                epoch_iterator = tqdm(train_dataloader,
                                      desc="Iteration",
                                      disable=True)

            # Reset the past mems state at the beginning of each epoch if necessary.
            if self.args.past_index >= 0:
                self._past = None

            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    continue

                tr_loss += self.training_step(model, inputs)

                if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
                        # last step in epoch but step is always smaller than gradient_accumulation_steps
                        len(epoch_iterator) <=
                        self.args.gradient_accumulation_steps and
                    (step + 1) == len(epoch_iterator)):
                    if self.args.fp16 and _use_native_amp:
                        self.scaler.unscale_(optimizer)
                        norm = torch.nn.utils.clip_grad_norm_(
                            model.parameters(), self.args.max_grad_norm)
                    elif self.args.fp16:
                        norm = torch.nn.utils.clip_grad_norm_(
                            amp.master_params(optimizer),
                            self.args.max_grad_norm)
                    else:
                        norm = torch.nn.utils.clip_grad_norm_(
                            model.parameters(), self.args.max_grad_norm)

                    if transformers.is_torch_tpu_available():
                        xm.optimizer_step(optimizer)
                    elif self.args.fp16 and _use_native_amp:
                        self.scaler.step(optimizer)
                        self.scaler.update()
                    else:
                        optimizer.step()

                    scheduler.step()
                    model.zero_grad()
                    self.global_step += 1
                    self.epoch = epoch + (step + 1) / len(epoch_iterator)

                    if (self.args.logging_steps > 0
                            and self.global_step % self.args.logging_steps
                            == 0) or (self.global_step == 1
                                      and self.args.logging_first_step):
                        logs = {}
                        tr_loss_scalar = tr_loss.item()
                        logs["loss"] = (tr_loss_scalar - logging_loss_scalar
                                        ) / self.args.logging_steps
                        logs["norm"] = norm.item()
                        # backward compatibility for pytorch schedulers
                        logs["learning_rate"] = (
                            scheduler.get_last_lr()[0]
                            if version.parse(torch.__version__) >=
                            version.parse("1.4") else scheduler.get_lr()[0])
                        logging_loss_scalar = tr_loss_scalar

                        self.log(logs)

                    # ----------------------------------------------------------------------
                    # BEGIN CHANGES.
                    # ----------------------------------------------------------------------

                    metrics = None
                    if self.args.evaluate_during_training and self.global_step % self.args.eval_steps == 0:
                        output = self.evaluate()
                        metrics = output.metrics
                        objective = self.dev_objective(metrics)
                        if objective > self.objective:
                            logger.info(
                                "Best dev result: {}".format(objective))
                            self.objective = objective
                            self.save_model(self.args.output_dir)

                    # ----------------------------------------------------------------------
                    # END CHANGES.
                    # ----------------------------------------------------------------------

                if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
                    epoch_iterator.close()
                    break
            if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
                train_iterator.close()
                break
            if self.args.tpu_metrics_debug or self.args.debug:
                # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                xm.master_print(met.metrics_report())

        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of training
            delattr(self, "_past")

        logger.info(
            "\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n"
        )
        return TrainOutput(self.global_step,
                           tr_loss / self.global_step), self.objective
Example #2
0
from transformers import (
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    TrainerCallback,
    Wav2Vec2CTCTokenizer,
    Wav2Vec2FeatureExtractor,
    Wav2Vec2ForCTC,
    Wav2Vec2Processor,
    EarlyStoppingCallback,
    is_apex_available,
    set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process

if is_apex_available():
    from apex import amp

if version.parse(torch.__version__) >= version.parse("1.6"):
    _is_native_amp_available = True
    from torch.cuda.amp import autocast

logger = logging.getLogger(__name__)


def list_field(default=None, metadata=None):
    return field(default_factory=lambda: default, metadata=metadata)


class Timer:
    """
Example #3
0
    def train(self, model_path: Optional[str] = None):
        """
        Main training entry point.

        Args:
            model_path (:obj:`str`, `optional`):
                Local path to the model if the model to train has been instantiated from a local path. If present,
                training will resume from the optimizer/scheduler states loaded here.
        """
        if not self.call_once_called and self.auto_tb_writer:
            self.call_once()
            self.call_once_called = True
        train_dataloader = self.get_train_dataloader()
        if self.args.max_steps > 0:
            t_total = self.args.max_steps
            num_train_epochs = (
                self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1
            )
        else:
            t_total = int(len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs)
            num_train_epochs = self.args.num_train_epochs

        optimizer, scheduler = self.get_optimizers(num_training_steps=t_total)
        
        # Check if saved optimizer or scheduler states exist
        if (
            model_path is not None
            and os.path.isfile(os.path.join(model_path, "optimizer.pt"))
            and os.path.isfile(os.path.join(model_path, "scheduler.pt"))
        ):
            # Load in optimizer and scheduler states
            optimizer.load_state_dict(
                torch.load(os.path.join(model_path, "optimizer.pt"), map_location=self.args.device)
            )
            scheduler.load_state_dict(torch.load(os.path.join(model_path, "scheduler.pt")))

        model = self.model
        if self.args.fp16:
            if not is_apex_available():
                raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")
            model, optimizer = amp.initialize(model, optimizer, opt_level=self.args.fp16_opt_level)

        # multi-gpu training (should be after apex fp16 initialization)
        if self.args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        # Distributed training (should be after apex fp16 initialization)
        if self.args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[self.args.local_rank],
                output_device=self.args.local_rank,
                find_unused_parameters=True,
            )

        if self.tb_writer is not None:
            self.tb_writer.add_text("args", self.args.to_json_string())
            self.tb_writer.add_hparams(self.args.to_sanitized_dict(), metric_dict={})

        # Train!
        if is_torch_tpu_available():
            total_train_batch_size = self.args.train_batch_size * xm.xrt_world_size()
        else:
            total_train_batch_size = (
                self.args.train_batch_size
                * self.args.gradient_accumulation_steps
                * (torch.distributed.get_world_size() if self.args.local_rank != -1 else 1)
            )
        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", self.num_examples(train_dataloader))
        logger.info("  Num Epochs = %d", num_train_epochs)
        logger.info("  Instantaneous batch size per device = %d", self.args.per_device_train_batch_size)
        logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d", total_train_batch_size)
        logger.info("  Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps)
        logger.info("  Total optimization steps = %d", t_total)

        self.global_step = 0
        self.epoch = 0
        epochs_trained = 0
        steps_trained_in_current_epoch = 0
        # Check if continuing training from a checkpoint
        if model_path is not None:
            # set global_step to global_step of last saved checkpoint from model path
            try:
                self.global_step = int(model_path.split("-")[-1].split("/")[0])
                epochs_trained = self.global_step // (len(train_dataloader) // self.args.gradient_accumulation_steps)
                steps_trained_in_current_epoch = self.global_step % (
                    len(train_dataloader) // self.args.gradient_accumulation_steps
                )

                logger.info("  Continuing training from checkpoint, will skip to saved global_step")
                logger.info("  Continuing training from epoch %d", epochs_trained)
                logger.info("  Continuing training from global step %d", self.global_step)
                logger.info("  Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
            except ValueError:
                self.global_step = 0
                logger.info("  Starting fine-tuning.")

        tr_loss = 0.0
        logging_loss = 0.0
        model.zero_grad()
        train_iterator = trange(
            epochs_trained, int(num_train_epochs), desc="Epoch", disable=not self.is_local_master()
        )
        for epoch in train_iterator:
            if isinstance(train_dataloader, DataLoader) and isinstance(train_dataloader.sampler, DistributedSampler):
                train_dataloader.sampler.set_epoch(epoch)

            if is_torch_tpu_available():
                parallel_loader = pl.ParallelLoader(train_dataloader, [self.args.device]).per_device_loader(
                    self.args.device
                )
                epoch_iterator = tqdm(parallel_loader, desc="Iteration", disable=not self.is_local_master())
            else:
                epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=not self.is_local_master())

            # Reset the past mems state at the beginning of each epoch if necessary.
            if self.args.past_index >= 0:
                self._past = None
                
            tqdm_dict = {}

            for step, inputs in enumerate(epoch_iterator):

                # Skip past any already trained steps if resuming training
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    continue

                tr_loss += self.training_step(model, inputs, optimizer)

                if (step + 1) % self.args.gradient_accumulation_steps == 0 or (
                    # last step in epoch but step is always smaller than gradient_accumulation_steps
                    len(epoch_iterator) <= self.args.gradient_accumulation_steps
                    and (step + 1) == len(epoch_iterator)
                ):
                    if self.args.fp16:
                        torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), self.args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(), self.args.max_grad_norm)

                    if is_torch_tpu_available():
                        xm.optimizer_step(optimizer)
                    else:
                        optimizer.step()

                    scheduler.step()
                    model.zero_grad()
                    self.global_step += 1
                    self.epoch = epoch + (step + 1) / len(epoch_iterator)

                    if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or (
                        self.global_step == 1 and self.args.logging_first_step
                    ):
                        logs: Dict[str, float] = {}
                        logs["loss"] = (tr_loss - logging_loss) / self.args.logging_steps
                        # backward compatibility for pytorch schedulers
                        logs["learning_rate"] = (
                            scheduler.get_last_lr()[0]
                            if version.parse(torch.__version__) >= version.parse("1.4")
                            else scheduler.get_lr()[0]
                        )
                        logging_loss = tr_loss
                        
                        tqdm_dict['train_loss'] = logs["loss"]

                        self.log(logs)

                    if self.args.evaluate_during_training and self.global_step % self.args.eval_steps == 0:
                        eval_metrics = self.evaluate(use_tqdm=self.use_tqdm_in_eval, log=True, description="eval") # also save the metrics
                        for k,v in eval_metrics.items():
                            if k[0] == '_':
                                tqdm_dict[k[1:]] = v
                    
                    if self.args.evaluate_trainset_during_training and self.global_step % self.args.eval_trainset_steps == 0:
                        train_metrics = self.evaluate(eval_dataloader=self.eval_train_dataloader,use_tqdm=self.use_tqdm_in_eval, log=True, description="eval_train")
                        for k,v in train_metrics.items():
                            if k[0] == '_':
                                tqdm_dict[k[1:]] = v

                    if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0:
                        # In all cases (even distributed/parallel), self.model is always a reference
                        # to the model we want to save.
                        if hasattr(model, "module"):
                            assert model.module is self.model
                        else:
                            assert model is self.model
                        # Save model checkpoint
                        output_dir = os.path.join(self.args.output_dir, self.exp_dir, f"{PREFIX_CHECKPOINT_DIR}-{self.global_step}")

                        self.save_model(output_dir)

                        if self.is_world_master():
                            self._rotate_checkpoints()

                        if is_torch_tpu_available():
                            xm.rendezvous("saving_optimizer_states")
                            xm.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            xm.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                        elif self.is_world_master():
                            torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                            torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))

                epoch_iterator.set_postfix(**tqdm_dict)
                train_iterator.set_postfix(**tqdm_dict)
                
                if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
                    epoch_iterator.close()
                    break
                
            if self.args.max_steps > 0 and self.global_step > self.args.max_steps:
                train_iterator.close()
                break
            if self.args.tpu_metrics_debug or self.args.debug:
                # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
                xm.master_print(met.metrics_report())

        if self.tb_writer:
            self.tb_writer.close()
            log_dirs = os.listdir(self.log_dir)
            for name in log_dirs:
                if re.match("\d{10}.*", name): # unknown dir generated by tensorboardX
                    shutil.rmtree(os.path.join(self.log_dir, name))
        if self.compare_datasets:
            self.tb_writer_for_train.close()
            self.tb_writer_for_eval.close()
            
        if self.args.past_index and hasattr(self, "_past"):
            # Clean the state at the end of training
            delattr(self, "_past")

        logger.info("\n\nTraining completed. Do not forget to share your model on huggingface.co/models =)\n\n")
        return TrainOutput(self.global_step, tr_loss / self.global_step)