Example #1
0
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, albert_config_file,
                                     pytorch_dump_path):
    # Initialise PyTorch model
    config = AlbertConfig.from_json_file(albert_config_file)
    print("Building PyTorch model from configuration: {}".format(str(config)))
    model = AlbertForMaskedLM(config)
    load_tf_weights_in_albert(model, config, tf_checkpoint_path)
    print("Save PyTorch model to {}".format(pytorch_dump_path))
    torch.save(model.state_dict(), pytorch_dump_path)
Example #2
0
def albert_convert_tf_checkpoint_to_pytorch(tf_checkpoint_path,
                                            albert_config_file,
                                            pytorch_dump_path):
    from transformers import AlbertConfig, AlbertForMaskedLM, load_tf_weights_in_albert
    # Initialise PyTorch model
    config = AlbertConfig.from_json_file(albert_config_file)
    print("Building PyTorch model from configuration: {}".format(str(config)))
    model = AlbertForMaskedLM(config)

    # Load weights from tf checkpoint
    load_tf_weights_in_albert(model, config, tf_checkpoint_path)

    # Save pytorch-model
    print("Save PyTorch model to {}".format(pytorch_dump_path))
    torch.save(model.state_dict(), pytorch_dump_path)