def test_large_model_pt(self):
        model_id = "facebook/detr-resnet-50"

        model = AutoModelForObjectDetection.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
        object_detector = ObjectDetectionPipeline(model=model, feature_extractor=feature_extractor)

        outputs = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg")
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
                {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
                {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
                {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
                {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
            ],
        )

        outputs = object_detector(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ]
        )
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
                    {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
                    {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
                    {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
                    {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
                ],
                [
                    {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}},
                    {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}},
                    {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}},
                    {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}},
                    {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}},
                ],
            ],
        )
    def test_small_model_pt(self):
        model_id = "mishig/tiny-detr-mobilenetsv3"

        model = AutoModelForObjectDetection.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
        object_detector = ObjectDetectionPipeline(model=model, feature_extractor=feature_extractor)

        outputs = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.0)

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"score": 0.3432, "label": "LABEL_0", "box": {"xmin": 160, "ymin": 120, "xmax": 480, "ymax": 359}},
                {"score": 0.3432, "label": "LABEL_0", "box": {"xmin": 160, "ymin": 120, "xmax": 480, "ymax": 359}},
            ],
        )

        outputs = object_detector(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            threshold=0.0,
        )

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {"score": 0.3432, "label": "LABEL_0", "box": {"xmin": 160, "ymin": 120, "xmax": 480, "ymax": 359}},
                    {"score": 0.3432, "label": "LABEL_0", "box": {"xmin": 160, "ymin": 120, "xmax": 480, "ymax": 359}},
                ],
                [
                    {"score": 0.3432, "label": "LABEL_0", "box": {"xmin": 160, "ymin": 120, "xmax": 480, "ymax": 359}},
                    {"score": 0.3432, "label": "LABEL_0", "box": {"xmin": 160, "ymin": 120, "xmax": 480, "ymax": 359}},
                ],
            ],
        )