def create_and_check_dpr_reader( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DPRReader(config=config) model.to(torch_device) model.eval() result = model(input_ids, attention_mask=input_mask,) self.parent.assertListEqual(list(result["start_logits"].size()), [self.batch_size, self.seq_length]) self.parent.assertListEqual(list(result["end_logits"].size()), [self.batch_size, self.seq_length]) self.parent.assertListEqual(list(result["relevance_logits"].size()), [self.batch_size])
def create_and_check_reader( self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels ): model = DPRReader(config=config) model.to(torch_device) model.eval() result = model( input_ids, attention_mask=input_mask, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,))