def test_save_load_pretrained_default(self):
        tokenizer_slow = self.get_tokenizer()
        tokenizer_fast = self.get_rust_tokenizer()
        feature_extractor = self.get_feature_extractor()

        processor_slow = OwlViTProcessor(tokenizer=tokenizer_slow,
                                         feature_extractor=feature_extractor)
        processor_slow.save_pretrained(self.tmpdirname)
        processor_slow = OwlViTProcessor.from_pretrained(self.tmpdirname,
                                                         use_fast=False)

        processor_fast = OwlViTProcessor(tokenizer=tokenizer_fast,
                                         feature_extractor=feature_extractor)
        processor_fast.save_pretrained(self.tmpdirname)
        processor_fast = OwlViTProcessor.from_pretrained(self.tmpdirname)

        self.assertEqual(processor_slow.tokenizer.get_vocab(),
                         tokenizer_slow.get_vocab())
        self.assertEqual(processor_fast.tokenizer.get_vocab(),
                         tokenizer_fast.get_vocab())
        self.assertEqual(tokenizer_slow.get_vocab(),
                         tokenizer_fast.get_vocab())
        self.assertIsInstance(processor_slow.tokenizer, CLIPTokenizer)
        self.assertIsInstance(processor_fast.tokenizer, CLIPTokenizerFast)

        self.assertEqual(processor_slow.feature_extractor.to_json_string(),
                         feature_extractor.to_json_string())
        self.assertEqual(processor_fast.feature_extractor.to_json_string(),
                         feature_extractor.to_json_string())
        self.assertIsInstance(processor_slow.feature_extractor,
                              OwlViTFeatureExtractor)
        self.assertIsInstance(processor_fast.feature_extractor,
                              OwlViTFeatureExtractor)
    def test_tokenizer_decode(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = OwlViTProcessor(tokenizer=tokenizer,
                                    feature_extractor=feature_extractor)

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)
Example #3
0
    def test_inference_object_detection(self):
        model_name = "google/owlvit-base-patch32"
        model = OwlViTForObjectDetection.from_pretrained(model_name).to(
            torch_device)

        processor = OwlViTProcessor.from_pretrained(model_name)

        image = prepare_img()
        inputs = processor(
            text=[["a photo of a cat", "a photo of a dog"]],
            images=image,
            max_length=16,
            padding="max_length",
            return_tensors="pt",
        ).to(torch_device)

        with torch.no_grad():
            outputs = model(**inputs)

        num_queries = int((model.config.vision_config.image_size /
                           model.config.vision_config.patch_size)**2)
        self.assertEqual(outputs.pred_boxes.shape,
                         torch.Size((1, num_queries, 4)))
        expected_slice_boxes = torch.tensor([[0.0948, 0.0471, 0.1915],
                                             [0.3194, 0.0583, 0.6498],
                                             [0.1441, 0.0452,
                                              0.2197]]).to(torch_device)
        self.assertTrue(
            torch.allclose(outputs.pred_boxes[0, :3, :3],
                           expected_slice_boxes,
                           atol=1e-4))
Example #4
0
    def test_inference(self):
        model_name = "google/owlvit-base-patch32"
        model = OwlViTModel.from_pretrained(model_name).to(torch_device)
        processor = OwlViTProcessor.from_pretrained(model_name)

        image = prepare_img()
        inputs = processor(
            text=[["a photo of a cat", "a photo of a dog"]],
            images=image,
            max_length=16,
            padding="max_length",
            return_tensors="pt",
        ).to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(**inputs)

        # verify the logits
        self.assertEqual(
            outputs.logits_per_image.shape,
            torch.Size(
                (inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
        )
        self.assertEqual(
            outputs.logits_per_text.shape,
            torch.Size(
                (inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
        )
        expected_logits = torch.tensor([[4.4420, 0.6181]], device=torch_device)

        self.assertTrue(
            torch.allclose(outputs.logits_per_image,
                           expected_logits,
                           atol=1e-3))
Example #5
0
def convert_owlvit_checkpoint(pt_backbone, flax_params, attn_params, pytorch_dump_folder_path, config_path=None):
    """
    Copy/paste/tweak model's weights to transformers design.
    """
    repo = Repository(pytorch_dump_folder_path, clone_from=f"google/{pytorch_dump_folder_path}")
    repo.git_pull()

    if config_path is not None:
        config = OwlViTConfig.from_pretrained(config_path)
    else:
        config = OwlViTConfig()

    hf_backbone = OwlViTModel(config).eval()
    hf_model = OwlViTForObjectDetection(config).eval()

    copy_text_model_and_projection(hf_backbone, pt_backbone)
    copy_vision_model_and_projection(hf_backbone, pt_backbone)
    hf_backbone.logit_scale = pt_backbone.logit_scale
    copy_flax_attn_params(hf_backbone, attn_params)

    hf_model.owlvit = hf_backbone
    copy_class_merge_token(hf_model, flax_params)
    copy_class_box_heads(hf_model, flax_params)

    # Save HF model
    hf_model.save_pretrained(repo.local_dir)

    # Initialize feature extractor
    feature_extractor = OwlViTFeatureExtractor(
        size=config.vision_config.image_size, crop_size=config.vision_config.image_size
    )
    # Initialize tokenizer
    tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32", pad_token="!", model_max_length=16)

    # Initialize processor
    processor = OwlViTProcessor(feature_extractor=feature_extractor, tokenizer=tokenizer)
    feature_extractor.save_pretrained(repo.local_dir)
    processor.save_pretrained(repo.local_dir)

    repo.git_add()
    repo.git_commit("Upload model and processor")
    repo.git_push()
    def test_processor_with_text_list(self):
        model_name = "google/owlvit-base-patch32"
        processor = OwlViTProcessor.from_pretrained(model_name)

        input_text = ["cat", "nasa badge"]
        inputs = processor(text=input_text)

        seq_length = 16
        self.assertListEqual(list(inputs.keys()),
                             ["input_ids", "attention_mask"])
        self.assertEqual(inputs["input_ids"].shape, (2, seq_length))

        # test if it raises when no input is passed
        with pytest.raises(ValueError):
            processor()
    def test_save_load_pretrained_additional_features(self):
        processor = OwlViTProcessor(
            tokenizer=self.get_tokenizer(),
            feature_extractor=self.get_feature_extractor())
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)",
                                                  eos_token="(EOS)")
        feature_extractor_add_kwargs = self.get_feature_extractor(
            do_normalize=False)

        processor = OwlViTProcessor.from_pretrained(self.tmpdirname,
                                                    bos_token="(BOS)",
                                                    eos_token="(EOS)",
                                                    do_normalize=False)

        self.assertEqual(processor.tokenizer.get_vocab(),
                         tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast)

        self.assertEqual(processor.feature_extractor.to_json_string(),
                         feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor,
                              OwlViTFeatureExtractor)
    def test_tokenizer(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = OwlViTProcessor(tokenizer=tokenizer,
                                    feature_extractor=feature_extractor)

        input_str = "lower newer"

        encoded_processor = processor(text=input_str, return_tensors="np")

        encoded_tok = tokenizer(input_str, return_tensors="np")

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key][0].tolist(),
                                 encoded_processor[key][0].tolist())
    def test_feature_extractor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = OwlViTProcessor(tokenizer=tokenizer,
                                    feature_extractor=feature_extractor)

        image_input = self.prepare_image_inputs()

        input_feat_extract = feature_extractor(image_input,
                                               return_tensors="np")
        input_processor = processor(images=image_input, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(),
                                   input_processor[key].sum(),
                                   delta=1e-2)
    def test_processor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = OwlViTProcessor(tokenizer=tokenizer,
                                    feature_extractor=feature_extractor)

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        self.assertListEqual(list(inputs.keys()),
                             ["input_ids", "attention_mask", "pixel_values"])

        # test if it raises when no input is passed
        with pytest.raises(ValueError):
            processor()
    def test_processor_case(self):
        model_name = "google/owlvit-base-patch32"
        processor = OwlViTProcessor.from_pretrained(model_name)

        input_texts = ["cat", "nasa badge"]
        inputs = processor(text=input_texts)

        seq_length = 16
        input_ids = inputs["input_ids"]
        predicted_ids = [
            [49406, 2368, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
            [49406, 6841, 11301, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        ]

        self.assertListEqual(list(inputs.keys()),
                             ["input_ids", "attention_mask"])
        self.assertEqual(inputs["input_ids"].shape, (2, seq_length))
        self.assertListEqual(list(input_ids[0]), predicted_ids[0])
        self.assertListEqual(list(input_ids[1]), predicted_ids[1])
    def test_processor_with_nested_text_list(self):
        model_name = "google/owlvit-base-patch32"
        processor = OwlViTProcessor.from_pretrained(model_name)

        input_texts = [["cat", "nasa badge"], ["person"]]
        inputs = processor(text=input_texts)

        seq_length = 16
        batch_size = len(input_texts)
        num_max_text_queries = max([len(texts) for texts in input_texts])

        self.assertListEqual(list(inputs.keys()),
                             ["input_ids", "attention_mask"])
        self.assertEqual(inputs["input_ids"].shape,
                         (batch_size * num_max_text_queries, seq_length))

        # test if it raises when no input is passed
        with pytest.raises(ValueError):
            processor()