Example #1
0
    def test_save_load_pretrained_additional_features(self):
        processor = VisionTextDualEncoderProcessor(
            tokenizer=self.get_tokenizer(),
            feature_extractor=self.get_feature_extractor())
        processor.save_pretrained(self.tmpdirname)

        tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)",
                                                  eos_token="(EOS)")
        feature_extractor_add_kwargs = self.get_feature_extractor(
            do_normalize=False, padding_value=1.0)

        processor = VisionTextDualEncoderProcessor.from_pretrained(
            self.tmpdirname,
            bos_token="(BOS)",
            eos_token="(EOS)",
            do_normalize=False,
            padding_value=1.0)

        self.assertEqual(processor.tokenizer.get_vocab(),
                         tokenizer_add_kwargs.get_vocab())
        self.assertIsInstance(processor.tokenizer,
                              (BertTokenizer, BertTokenizerFast))

        self.assertEqual(processor.feature_extractor.to_json_string(),
                         feature_extractor_add_kwargs.to_json_string())
        self.assertIsInstance(processor.feature_extractor, ViTFeatureExtractor)
Example #2
0
    def test_tokenizer_decode(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = VisionTextDualEncoderProcessor(
            tokenizer=tokenizer, feature_extractor=feature_extractor)

        predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]

        decoded_processor = processor.batch_decode(predicted_ids)
        decoded_tok = tokenizer.batch_decode(predicted_ids)

        self.assertListEqual(decoded_tok, decoded_processor)
Example #3
0
    def test_inference(self):
        model = VisionTextDualEncoderModel.from_pretrained(
            "clip-italian/clip-italian", logit_scale_init_value=1)
        processor = VisionTextDualEncoderProcessor.from_pretrained(
            "clip-italian/clip-italian")

        image = Image.open(
            "./tests/fixtures/tests_samples/COCO/000000039769.png")
        inputs = processor(
            text=["una foto di un gatto", "una foto di un cane"],
            images=image,
            padding=True,
            return_tensors="pt")

        outputs = model(**inputs)

        # verify the logits
        self.assertEqual(
            outputs.logits_per_image.shape,
            (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]))
        self.assertEqual(
            outputs.logits_per_text.shape,
            (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]),
        )

        expected_logits = torch.tensor([[1.2284727, 0.3104122]])

        self.assertTrue(
            torch.allclose(outputs.logits_per_image,
                           expected_logits,
                           atol=1e-3))
Example #4
0
    def test_save_load_pretrained_default(self):
        tokenizer = self.get_tokenizer()
        feature_extractor = self.get_feature_extractor()

        processor = VisionTextDualEncoderProcessor(
            tokenizer=tokenizer, feature_extractor=feature_extractor)

        processor.save_pretrained(self.tmpdirname)
        processor = VisionTextDualEncoderProcessor.from_pretrained(
            self.tmpdirname)

        self.assertEqual(processor.tokenizer.get_vocab(),
                         tokenizer.get_vocab())
        self.assertIsInstance(processor.tokenizer,
                              (BertTokenizer, BertTokenizerFast))

        self.assertEqual(processor.feature_extractor.to_json_string(),
                         feature_extractor.to_json_string())
        self.assertIsInstance(processor.feature_extractor, ViTFeatureExtractor)
Example #5
0
    def test_tokenizer(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = VisionTextDualEncoderProcessor(
            tokenizer=tokenizer, feature_extractor=feature_extractor)

        input_str = "lower newer"

        encoded_processor = processor(text=input_str)

        encoded_tok = tokenizer(input_str)

        for key in encoded_tok.keys():
            self.assertListEqual(encoded_tok[key], encoded_processor[key])
Example #6
0
    def test_feature_extractor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = VisionTextDualEncoderProcessor(
            tokenizer=tokenizer, feature_extractor=feature_extractor)

        image_input = self.prepare_image_inputs()

        input_feat_extract = feature_extractor(image_input,
                                               return_tensors="np")
        input_processor = processor(images=image_input, return_tensors="np")

        for key in input_feat_extract.keys():
            self.assertAlmostEqual(input_feat_extract[key].sum(),
                                   input_processor[key].sum(),
                                   delta=1e-2)
Example #7
0
    def test_processor(self):
        feature_extractor = self.get_feature_extractor()
        tokenizer = self.get_tokenizer()

        processor = VisionTextDualEncoderProcessor(
            tokenizer=tokenizer, feature_extractor=feature_extractor)

        input_str = "lower newer"
        image_input = self.prepare_image_inputs()

        inputs = processor(text=input_str, images=image_input)

        self.assertListEqual(
            list(inputs.keys()),
            ["input_ids", "token_type_ids", "attention_mask", "pixel_values"])

        # test if it raises when no input is passed
        with self.assertRaises(ValueError):
            processor()