def test_inference_large(self): model = WavLMModel.from_pretrained("microsoft/wavlm-large").to( torch_device) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "microsoft/wavlm-large", return_attention_mask=True) input_speech = self._load_datasamples(2) inputs = feature_extractor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): hidden_states_slice = (model( input_values, attention_mask=attention_mask).last_hidden_state[:, -2:, -2:].cpu()) EXPECTED_HIDDEN_STATES_SLICE = torch.tensor([[[0.2122, 0.0500], [0.2118, 0.0563]], [[0.1353, 0.1818], [0.2453, 0.0595]]]) self.assertTrue( torch.allclose(hidden_states_slice, EXPECTED_HIDDEN_STATES_SLICE, rtol=5e-2))
def test_inference_base(self): model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus").to( torch_device) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "microsoft/wavlm-base-plus", return_attention_mask=True) input_speech = self._load_datasamples(2) inputs = feature_extractor(input_speech, return_tensors="pt", padding=True) input_values = inputs.input_values.to(torch_device) attention_mask = inputs.attention_mask.to(torch_device) with torch.no_grad(): hidden_states_slice = (model( input_values, attention_mask=attention_mask).last_hidden_state[:, -2:, -2:].cpu()) EXPECTED_HIDDEN_STATES_SLICE = torch.tensor([[[0.0577, 0.1161], [0.0579, 0.1165]], [[0.0199, 0.1237], [0.0059, 0.0605]]]) # TODO: update the tolerance after the CI moves to torch 1.10 self.assertTrue( torch.allclose(hidden_states_slice, EXPECTED_HIDDEN_STATES_SLICE, atol=5e-2))
def convert_wavlm_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None): # load the pre-trained checkpoints checkpoint = torch.load(checkpoint_path) cfg = WavLMConfigOrig(checkpoint["cfg"]) model = WavLMOrig(cfg) model.load_state_dict(checkpoint["model"]) model.eval() if config_path is not None: config = WavLMConfig.from_pretrained(config_path) else: config = WavLMConfig() hf_wavlm = WavLMModel(config) recursively_load_weights(model, hf_wavlm) hf_wavlm.save_pretrained(pytorch_dump_folder_path)
def create_and_check_batch_inference(self, config, input_values, *args): # test does not pass for models making use of `group_norm` # check: https://github.com/pytorch/fairseq/issues/3227 model = WavLMModel(config=config) model.to(torch_device) model.eval() input_values = input_values[:3] attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool) input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]] # pad input for i in range(len(input_lengths)): input_values[i, input_lengths[i] :] = 0.0 attention_mask[i, input_lengths[i] :] = 0.0 batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state for i in range(input_values.shape[0]): input_slice = input_values[i : i + 1, : input_lengths[i]] output = model(input_slice).last_hidden_state batch_output = batch_outputs[i : i + 1, : output.shape[1]] self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
def create_and_check_model(self, config, input_values, attention_mask): model = WavLMModel(config=config) model.to(torch_device) model.eval() result = model(input_values, attention_mask=attention_mask) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size) )
def test_model_from_pretrained(self): model = WavLMModel.from_pretrained("microsoft/wavlm-base-plus") self.assertIsNotNone(model)