Example #1
0
        }
        yield d


# Runs the main part of the pipeline. Errors will be tagged, clean politicians will continue on to BQ.
pol = (
    p
    | 'Read from CSV' >> beam.io.ReadFromText(
        '{0}/tmp/senate_members/*.csv'.format(os.path.expanduser('~')),
        skip_header_lines=1)
    | 'Split Values' >> beam.ParDo(SplitFn())
    # | 'Isolate Attributes' >> beam.ParDo(pt.IsolateAttrFn())
    | 'Scrub First Name' >> beam.ParDo(pt.ScrubFnameFn(), keep_suffix=True)
    | 'Fix Nicknames' >> beam.ParDo(
        pt.FixNicknameFn(), n_tbl=nickname_tbl, keep_nickname=True)
    | 'Scrub Last Name' >> beam.ParDo(pt.ScrubLnameFn())
    | 'Fix Nones' >> beam.ParDo(pt.FixNoneFn())
    | 'Tag Errors' >> beam.ParDo(pt.TagErrorsFn()).with_outputs('error_tag'))

error_pols = pol.error_tag
clean_pols = pol[None]

# A new Politician will only be published if thy are not already contained in the Politicians table. If they are new,
# they will be properly uploaded. If they are not new, then they will be ignored in this pipeline.
# new_pol = (
#         clean_pols
#         | 'Filter Existing Pols' >> beam.ParDo(pt.NewPolsOnlyFn(), pol_tbl=pols_tbl)
#         | 'Filter Pol Keys' >> beam.ParDo(pt.FilterKeysFn(), attr_lst=pol_attr_lst)
#         | 'Write Pol to BQ' >> beam.io.WriteToBigQuery(
#             table=pol_spec,
#             write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND,
                'district': district,
                'date': date
            }
            yield d

# Runs the main part of the pipeline. Errors will be tagged, clean politicians will continue on to BQ.
pol = (
        p
        | 'Read from CSV' >> beam.io.ReadFromText(df_blob,
    # 'gs://{0}/tmp/house_members/*.csv'.format(os.path.expanduser('~')),
                                                  skip_header_lines=1)
        | 'Split Values' >> beam.ParDo(SplitFn())
        # | 'Isolate Attributes' >> beam.ParDo(pt.IsolateAttrFn())
        | 'Scrub First Name' >> beam.ParDo(pt.ScrubFnameFn(), keep_suffix=True)
        | 'Fix Nicknames' >> beam.ParDo(pt.FixNicknameFn(), n_tbl=nickname_tbl, keep_nickname=True)
        | 'Scrub Last Name' >> beam.ParDo(pt.ScrubLnameFn(), keep_suffix=True)
        | 'Map States' >> beam.ParDo(StateMapFn(), tbl=state_tbl)
        | 'Fix Nones' >> beam.ParDo(pt.FixNoneFn())
        | 'Tag Errors' >> beam.ParDo(pt.TagErrorsFn()).with_outputs('error_tag'))

error_pols = pol.error_tag
clean_pols = pol[None]

# A new Politician will only be published if thy are not already contained in the Politicians table. If they are new,
# they will be properly uploaded. If they are not new, then they will be ignored in this pipeline.
new_pol = (clean_pols
           | 'Filter Existing Pols' >> beam.ParDo(pt.NewPolsOnlyFn(), pol_tbl=pols_tbl)
           | 'Filter Keys' >> beam.ParDo(pt.FilterKeysFn(), attr_lst=pol_attr_lst)
           | 'Write Pol to BQ' >> beam.io.WriteToBigQuery(
            table=pol_spec,
            write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND,