Example #1
0
def objectiveFunctionTV(x, N, strtag, kern, dirWeight=0, dirs=None, nmins=0,
                        dirInfo=[None,None,None,None], a=10):
    if np.max(a*x) < 10:
        obj = (1/a)*np.log(np.cosh(a*tf.TV(x,N,strtag,kern,dirWeight,dirs,nmins,dirInfo)))
    else:
        obj = abs(tf.TV(x,N,strtag,kern,dirWeight,dirs,nmins,dirInfo))
    return obj
Example #2
0
def objectiveFunctionTV(x,
                        N,
                        strtag,
                        dirWeight=0,
                        dirs=None,
                        nmins=0,
                        dirInfo=[None, None, None, None],
                        a=10):
    return (1 / a) * np.log(
        np.cosh(a * tf.TV(x, N, strtag, dirWeight, dirs, nmins, dirInfo)))
Example #3
0
def gTV(x, N, strtag, kern, dirWeight, dirs=None, nmins=0, dirInfo=[None,None,None], a=10):

    if nmins:
        Ahat = dirInfo[0]
        dI = dirInfo[1]
        inds = dirInfo[2]
    else:
        Ahat = None
        dI = None
        inds = None
    
    if len(x.shape) == 2:
        N = np.hstack([1,N])
        
    x0 = x.reshape(N)
    grad = np.zeros(np.hstack([N[0], len(strtag), N[1:]]))#,dtype=complex)
    if kern.shape == 3:
        Nkern = np.hstack(1,[kern.shape[1:]])
    else:
        Nkern = kern.shape[1:]
        
    TV_data = tf.TV(x0,N,strtag,kern,dirWeight,dirs,nmins,dirInfo).real
    for i in xrange(len(strtag)):
        if strtag[i] == 'spatial':
            kernHld = np.flipud(np.fliplr(kern[i])).reshape(Nkern)
            grad[:,i,:,:] = correlate(np.tanh(a*TV_data[i]),kernHld,mode='wrap')
            #grad[:,i,:,:] = np.tanh(a*TV_data[i])
            #grad[:,i,:,:] = fftconvolve(np.tanh(a*TV_data[i]),kern[i].reshape(Nkern),mode='same')
        elif strtag[i] == 'diff':
            for nDir in xrange(N[0]):
                rows = np.where(dI[nDir] == 1)[0]
                dDir = np.zeros([len(rows) + 1, Ahat.shape[1], N[-2]*N[-1]],complex)
                r = inds[nDir,:]
                Iq = x0[nDir,:]
                Ir = x0[inds[nDir],:]
                Irq = (Ir - Iq).reshape(nmins,-1)
                dDir[0] = -1*np.tanh(a*np.dot(Ahat[nDir],Irq))
                for q in range(1,dDir.shape[0]):
                    #import pdb; pdb.set_trace()
                    diffHld = x0[nDir].flatten() - x0[rows[q-1]].flatten()
                    dDir[q] = np.tanh(a*np.dot(Ahat[rows[q-1]],np.dot(dI[nDir,rows[q-1],:].reshape(nmins,1),diffHld.reshape(1,-1))))
                grad[nDir,i,:,:] = np.sum(dDir,axis=(0,1)).reshape(N[-2],N[-1])
                
            
    grad = np.sum(grad,axis=1)
    return grad
Example #4
0
def gTV(x,N,strtag,dirWeight,dirs = None,nmins = 0, dirInfo = None, p = 1,l1smooth = 1e-15, a = 1.0):
    
    if dirInfo:
        M = dirInfo[0]
        dIM = dirInfo[1]
        Ause = dirInfo[2]
        inds = dirInfo[3]
    else:
        M = None
        dIM = None
        Ause = None
        inds = None
    
    if len(N) == 2:
        N = np.hstack([1, N])
        
    x0 = x.reshape(N)
    grad = np.zeros(np.hstack([N[0], len(strtag),N[1],N[2]]))
    
    
    for kk in range(N[0]):
        TV_data = tf.TV(x0[kk,:,:],N,strtag,dirWeight,dirs,nmins,M)
        for i in xrange(len(strtag)):
        if strtag[i] == 'spatial':
            TV_dataRoll = np.roll(TV_data[i,:,:],1,axis=i)
            grad[kk,i,:,:] = -np.tanh(a*(TV_data[i,:,:])) + np.tanh(a*(TV_dataRoll))
            #grad[i,:,:] = -np.sign(TV_data[i,:,:]) + np.sign(TV_dataRoll)
        elif strtag[i] == 'diff':
            None
            #for d in xrange(N[i]):               
                #dDirx = np.zeros(np.hstack([N,M.shape[1]])) # dDirx.shape = [nDirs,imx,imy,nmins]
                #for ind_q in xrange(N[i]):
                        #for ind_r in xrange(M.shape[1]):
                            #dDirx[ind_q,:,:,ind_r] = x0[inds[ind_q,ind_r],:,:] - x0[ind_q,:,:]
                #for comb in xrange(len(Ause[kk])):
                        #colUse = Ause[dir][comb]
                        #for qr in xrange(M.shape[1]):
                            #grad[i,d,:,:] = np.dot(dIM[d,qr,colUse],dDirx[d,:,:,qr]) + grad[i,d,:,:] 
    
    # Need to make sure here that we're iterating over the correct dimension
    # As of right now, this assumes that we're working on a slice by slice basis
    # I'll have to implement 3D data work soon.
    
    grad = np.sum(grad,axis=0)
    return grad
Example #5
0
def gTV(x,
        N,
        strtag,
        kern,
        dirWeight,
        dirs=None,
        nmins=0,
        dirInfo=[None, None, None, None],
        a=10):

    if nmins:
        M = dirInfo[0]
        dIM = dirInfo[1]
        Ause = dirInfo[2]
        inds = dirInfo[3]
    else:
        M = None
        dIM = None
        Ause = None
        inds = None

    if len(x.shape) == 2:
        N = np.hstack([1, N])

    x0 = x.reshape(N)
    grad = np.zeros(np.hstack([N[0], len(strtag), N[1:]]), dtype=float)
    if kern.shape == 3:
        Nkern = np.hstack(1, [kern.shape[1:]])
    else:
        Nkern = kern.shape[1:]

    TV_data = tf.TV(x0, N, strtag, kern, dirWeight, dirs, nmins, dirInfo)
    for i in xrange(len(strtag)):
        if strtag[i] == 'spatial':
            grad[:, i, :, :] = convolve(np.tanh(a * TV_data[i]),
                                        kern[i].reshape(Nkern),
                                        mode='wrap')
        elif strtag[i] == 'diff':
            None
    grad = np.sum(grad, axis=1)
    return grad
Example #6
0
def optfun(x, N, lam1, lam2, data, k, strtag, ph, dirWeight=0, dirs=None,
           dirInfo=[None,None,None,None], nmins=0,wavelet='db4',mode="per",a=1.0):
    '''
    This is the optimization function that we're trying to optimize. We are optimizing x here, and testing it within the funcitons that we want, as called by the functions that we've created
    '''
    #dirInfo[0] is M
    #import pdb; pdb.set_trace()
    tv = 0
    xfm = 0
    data.shape = N
    x.shape = N
    obj_data = np.fft.fftshift(k)*(data - tf.fft2c(x,ph))
    obj = np.sum(obj_data*obj_data.conj()) #L2 Norm
    #tv = np.sum(abs(tf.TV(x,N,strtag,dirWeight,dirs,nmins,M))) #L1 Norm
    if lam1:
        tv = np.sum((1/a)*np.log(np.cosh(a*tf.TV(x,N,strtag,dirWeight,dirs,nmins,dirInfo))))
    #xfm cost calc
    if lam2:
        if len(N) > 2:
            xfm=0
            for kk in range(N[0]):
                wvlt = tf.xfm(x[kk,:,:],wavelet=wavelet,mode=mode)
                xfm += np.sum((1/a)*np.log(np.cosh(a*wvlt[0])))
                for i in xrange(1,len(wvlt)):
                    xfm += np.sum([np.sum((1/a)*np.log(np.cosh(a*wvlt[i][j]))) for j in xrange(3)]) 
        else:
            wvlt = tf.xfm(x,wavelet=wavelet,mode=mode)
            xfm = np.sum((1/a)*np.log(np.cosh(a*wvlt[0])))
            for i in xrange(1,len(wvlt)):
                xfm += np.sum([np.sum((1/a)*np.log(np.cosh(a*wvlt[i][j]))) for j in xrange(3)]) 
    
    x.shape = (x.size,) # Not the most efficient way to do this, but we need the shape to reset.
    data.shape = (data.size,)
    #output
    #print('obj: %.2f' % abs(obj))
    #print('tv: %.2f' % abs(lam1*tv))
    #print('xfm: %.2f' % abs(lam2*xfm))
    return abs(obj + lam1*tv + lam2*xfm)