Example #1
0
    def __init__(self, input_genes):
        super(
            GeneToGeneBiclusters, self
        ).__init__(module=BiclusterByGene(
            bicluster_url=
            'https://bicluster.renci.org/RNAseqDB_bicluster_gene_to_tissue_v3_gene/',
            bicluster_bicluster_url=
            'https://bicluster.renci.org/RNAseqDB_bicluster_gene_to_tissue_v3_bicluster/',
            target_prefix='NCBI'),
                   metadata=ModuleMetaData(
                       name="Mod9B - Gene-to-Gene Bicluster",
                       source='RNAseqDB Biclustering',
                       association=GeneToGeneAssociation,
                       domain=ConceptSpace(Gene, ['ENSEMBL']),
                       relationship='related_to',
                       range=ConceptSpace(Gene, ['ENSEMBL']),
                   ))

        input_gene_set = self.get_simple_input_identifier_list(input_genes)

        asyncio.run(self.module.gene_to_gene_biclusters_async(input_gene_set))

        sorted_list_of_output_genes = self.module.gene_to_gene_bicluster_summarize(
            input_gene_set)

        self.results = pd.DataFrame.from_records(sorted_list_of_output_genes)
    def __init__(self, input_genes):
        super(
            GeneToGeneDepMapBiclusters, self
        ).__init__(module=BiclusterByGene(
            bicluster_url=
            'https://smartbag-crispridepmap.ncats.io/biclusters_DepMap_gene_to_cellline_v1_gene/',
            bicluster_bicluster_url=
            'https://smartbag-crispridepmap.ncats.io/biclusters_DepMap_gene_to_cellline_v1_bicluster/',
            target_prefix=''),
                   metadata=ModuleMetaData(
                       name="Mod9B - Gene-to-Gene Bicluster",
                       source='DepMap Biclustering',
                       association=GeneToGeneAssociation,
                       domain=ConceptSpace(Gene, ['NCBI']),
                       relationship='related_to',
                       range=ConceptSpace(Gene, ['NCBI'])))

        input_gene_set = self.get_simple_input_identifier_list(input_genes)

        asyncio.run(self.module.gene_to_gene_biclusters_async(input_gene_set))

        sorted_list_of_output_genes = self.module.gene_to_gene_bicluster_summarize(
            input_gene_set)

        self.results = pd.DataFrame.from_records(sorted_list_of_output_genes)
Example #3
0
    def __init__(self, input_genes, action='InteractionActions', rows=50):

        super(ChemicalGeneInteractionSet,
              self).__init__(module=ChemicalGeneInteractions(),
                             metadata=ModuleMetaData(
                                 name="Module 1B: Chemical Gene Interaction",
                                 source='Chemical Toxicology Database (CTD)',
                                 association=ChemicalToGeneAssociation,
                                 domain=ConceptSpace(Gene, ['HGNC']),
                                 relationship='interacts_with',
                                 range=ConceptSpace(ChemicalSubstance,
                                                    ['ChemicalID'])))

        input_gene_set = self.get_input_data_frame(input_genes)

        self.results = self.module.get_gene_chemical_interactions(
            input_gene_set, action, rows)
Example #4
0
    def __init__(self, input_genes, threshold):

        super(FunctionallySimilarGenes,
              self).__init__(module=FunctionalSimilarity('human'),
                             metadata=ModuleMetaData(
                                 name="Mod1A Functional Similarity",
                                 source='Monarch Biolink',
                                 association=FunctionalAssociation,
                                 domain=ConceptSpace(Gene, ['HGNC']),
                                 relationship='related_to',
                                 range=ConceptSpace(Gene, ['HGNC']),
                             ))

        input_gene_data_frame = self.get_input_data_frame(input_genes)

        self.results = self.module.compute_similarity(input_gene_data_frame,
                                                      threshold)
Example #5
0
    def __init__(self, input_genes, threshold):

        super(PhenotypicallySimilarGenes, self).__init__(
            module=PhenotypeSimilarity('human'),
            metadata=ModuleMetaData(
                name="Mod1B1 Phenotype Similarity",
                source='Monarch Biolink',
                association=GeneToPhenotypicFeatureAssociation,
                domain=ConceptSpace(Gene, ['HGNC']),
                relationship='has_phenotype',
                range=ConceptSpace(Gene, ['HGNC']),
            )
        )

        input_gene_data_frame = self.get_input_data_frame(input_genes)

        self.results = self.module.compute_similarity(input_gene_data_frame, threshold)
    def __init__(self, input_genes, threshold=0):
        super(GeneInteractionSet,
              self).__init__(module=GeneInteractions(),
                             metadata=ModuleMetaData(
                                 name="Module 1E - Gene Interaction",
                                 source='Monarch Biolink',
                                 association=GeneToGeneAssociation,
                                 domain=ConceptSpace(Gene, ['HGNC']),
                                 relationship='interacts_with',
                                 range=ConceptSpace(Gene, ['HGNC']),
                             ))

        input_gene_data_frame = self.get_input_data_frame(input_genes)

        # TODO: add schema check

        self.results = self.module.get_interactions(input_gene_data_frame,
                                                    threshold)
    def __init__(self, input_genes):

        super(GeneToTissueBiclusters, self).__init__(
            module=BiclusterByGeneToTissue(),
            metadata=ModuleMetaData(
                name="Mod9A - Gene-to-Tissue Bicluster",
                source='RNAseqDB Biclustering',
                association=GeneToExpressionSiteAssociation,
                domain=ConceptSpace(Gene, ['ENSEMBL']),
                relationship='related_to',
                range=ConceptSpace(AnatomicalEntity,
                                   ['MONDO', 'DOID', 'UBERON']),
            ))

        input_gene_set = self.get_simple_input_identifier_list(input_genes)

        most_common_tissues = asyncio.run(
            self.module.gene_to_tissue_biclusters_async(input_gene_set))

        self.results = pd.DataFrame.from_records(most_common_tissues)
    def __init__(self, input_tissues):

        super(TissueToTissueBicluster, self).__init__(
            module=BiclusterByTissueToTissue(),
            metadata=ModuleMetaData(
                name="Mod9A - Tissue-to-Tissue Bicluster",
                source='RNAseqDB Biclustering',
                association=AnatomicalEntityToAnatomicalEntityAssociation,
                domain=ConceptSpace(AnatomicalEntity, ['UBERON']),
                relationship='related_to',
                range=ConceptSpace(AnatomicalEntity, ['UBERON']),
            ))

        input_tissue_ids = self.get_simple_input_identifier_list(input_tissues)

        most_common_tissues = asyncio.run(
            self.module.tissue_to_tissue_biclusters_async(input_tissue_ids))

        self.results = pd.DataFrame.from_records(most_common_tissues,
                                                 columns=["hit_id", "score"])
Example #9
0
    def __init__(self, input_phenotypes):

        super(PhenotypeToDiseaseBiclusters, self).__init__(
            module=BiclusterByPhenotypeToDisease(),
            metadata=ModuleMetaData(
                name="Mod9A - Phenotype-to-Disease Bicluster",
                source='RNAseqDB Biclustering',
                association=DiseaseToPhenotypicFeatureAssociation,
                domain=ConceptSpace(PhenotypicFeature, ['HP']),
                relationship='has_phenotype',
                range=ConceptSpace(Disease, ['MONDO'])))

        input_phenotype_ids: List[str] = self.get_simple_input_identifier_list(
            input_phenotypes)

        most_common_diseases = asyncio.run(
            self.module.phenotype_to_disease_biclusters_async(
                input_phenotype_ids))

        self.results = pd.DataFrame.from_records(most_common_diseases,
                                                 columns=["hit_id", "score"])
Example #10
0
    def __init__(self, disease_id, disease_name='', query_biolink=True):

        super(DiseaseAssociatedGeneSet,
              self).__init__(module=LookUp(),
                             metadata=ModuleMetaData(
                                 name="Mod2.0 - Disease Associated Genes",
                                 source='Monarch Biolink',
                                 association=GeneToDiseaseAssociation,
                                 domain=ConceptSpace(Disease, ['MONDO']),
                                 relationship='gene_associated_with_condition',
                                 range=ConceptSpace(Gene, ['HGNC']),
                             ))

        # get genes associated with disease from Biolink
        self.results = self.module.disease_geneset_lookup(
            disease_id, disease_name, query_biolink)

        if not self.results.empty:
            self.disease_associated_genes = self.results[[
                'hit_id', 'hit_symbol'
            ]].to_dict(orient='records')
        else:
            self.disease_associated_genes = []