Example #1
0
    def forward(self, x):
        """Executes this layer as part of a forward pass through the model.

    Args:
      x: Tensor of same shape and dtype as the input signature used to
          initialize this layer.

    Returns:
      Tensor of same shape and dtype as the input.
    """
        m1, m2, mb, w1, w2, b2 = self.weights
        if self._mode != 'predict':
            w1 = np.reshape(w1.T, (-1, self._d_ff))
            w2 = np.reshape(w2, (self._d_ff, -1))
        x_shape = x.shape
        x = np.reshape(x,
                       [-1, x_shape[-1]])  # Easier to operate on flattened x.

        # Q: should we add bias and/or put relu after the low-rank m1 dot?
        mask_logits = np.dot(np.dot(x, m1), m2) + mb
        mask_logits = np.reshape(mask_logits, [-1, self._d1, self._d2])
        # Softmax.
        mask_logsumexp = fastmath.logsumexp(mask_logits,
                                            axis=-1,
                                            keepdims=True)
        log_mask = mask_logits - mask_logsumexp
        mask = np.exp(log_mask)
        # Gumbel-softmax with straight-through discretization.
        rng1, rng2 = fastmath.random.split(self.rng, 2)
        u = fastmath.random.uniform(rng1, mask.shape, np.float32, 1e-6,
                                    1.0 - 1e-6)
        g = -np.log(-np.log(u))
        quant_mask = np.argmax(log_mask + g * self._temperature, axis=-1)
        if self._mode == 'train':
            # Tricks from Section 2.1 in https://arxiv.org/abs/1801.09797
            quant_mask = metrics.one_hot(quant_mask, self._n_elements_in_block)
            quant_mask = fastmath.stop_gradient(quant_mask)
            quant_mask += mask - fastmath.stop_gradient(
                mask)  # straight-through
            # We will sometimes (50% of the batches) use the soft-mask instead of
            # the quantized mask to improve training stability (see the paper above).
            # Q: is selecting 50% of batches the best? Other %? Mixed in-batch?
            select = fastmath.random.uniform(rng2, (), np.float32, -1.0, 1.0)
            quant_mask = np.where(select > 0.0, quant_mask, mask)
            quant_mask = np.reshape(quant_mask, [-1, self._d_ff])

        if self._mode == 'train':
            # In training, run full matmul to get benefits from the above tricks.
            mid = np.dot(x, w1) * quant_mask  # [joint_batch, d_ff]
            relu = np.where(mid <= 0, np.zeros_like(mid), mid)
            res = np.dot(relu, w2) + b2
        elif self._mode == 'predict':
            # w1 = np.reshape(w1.T, (self._d1, self._d2, -1))
            # w2 = np.reshape(w2, (self._d1, self._d2, -1))
            # This implementation mimicks inference. It's not efficient for large
            # size of joint_batch, but at inference that will be 1 most of the time.
            # Shapes:
            # quant_mask is [joint_batch, self._d1]
            # w1 is [d_model, self._d1, self._d2]
            # we'll index w1 with advanced numpy indexing, first range over
            # self._d1 times the batch size, second range being quant_mask
            batch_size = quant_mask.shape[0]
            idx1 = np.array([np.arange(self._d1)] * batch_size)
            # flatten indices and select from w1
            idx1 = np.reshape(idx1, [-1])
            idx2 = np.reshape(quant_mask, [-1])
            w = w1[idx1,
                   idx2, :]  # now we have per-element weights with batch dim
            w = np.reshape(w, [batch_size, self._d1, -1])
            mid = np.einsum('ai,aji->aj', x, w)
            relu = np.where(mid <= 0, np.zeros_like(mid), mid)
            # w2 is [self._d1, self._d2, d_model]
            v = w2[idx1, idx2, :]
            v = np.reshape(v, [batch_size, self._d1, -1])
            res = np.einsum('ai,aij->aj', relu, v) + b2
        else:
            quant_mask = metrics.one_hot(quant_mask, self._n_elements_in_block)
            quant_mask = np.reshape(quant_mask, [-1, self._d_ff])
            mid = np.dot(x, w1) * quant_mask  # [joint_batch, d_ff]
            relu = np.where(mid <= 0, np.zeros_like(mid), mid)
            res = np.dot(relu, w2) + b2

        return np.reshape(res, x_shape)  # un-flatten if needed
Example #2
0
    def forward(self, x):
        """Executes this layer as part of a forward pass through the model.

    Args:
      x: Tensor of same shape and dtype as the input signature used to
        initialize this layer.

    Returns:
      Tensor of same shape and dtype as the input.
    """
        m1, w1, w2, b2 = self.weights
        x_shape = x.shape
        x = np.reshape(x,
                       [-1, x_shape[-1]])  # Easier to operate on flattened x.

        # Q: check if we need bias and/or put relu after the m1 dot?
        mask_logits = np.dot(x, m1)
        # Softmax.
        mask_logsumexp = fastmath.logsumexp(mask_logits,
                                            axis=-1,
                                            keepdims=True)
        log_mask = mask_logits - mask_logsumexp
        mask = np.exp(log_mask)
        # Gumbel-softmax with straight-through discretization.
        # TODO(lukaszkaiser, chowdhery): Extract this block and share
        rng1, rng2 = fastmath.random.split(self.rng, 2)
        u = fastmath.random.uniform(rng1, mask.shape, np.float32, 1e-6,
                                    1.0 - 1e-6)
        g = -np.log(-np.log(u))
        selected_experts = np.argmax(log_mask + g * self._temperature, axis=-1)
        if self._mode == 'train':
            # Tricks from Section 2.1 in https://arxiv.org/abs/1801.09797
            quant_mask = metrics.one_hot(selected_experts, self._num_experts)
            quant_mask = fastmath.stop_gradient(quant_mask)
            quant_mask += mask - fastmath.stop_gradient(
                mask)  # straight-through
            # We will sometimes (50% of the batches) use the soft-mask instead of
            # the quantized mask to improve training stability (see the paper above).
            # Q: is selecting 50% of batches the best? Other %? Mixed in-batch?
            select = fastmath.random.uniform(rng2, (), np.float32, -1.0, 1.0)
            quant_mask = np.where(select > 0.0, quant_mask, mask)
        else:
            quant_mask = metrics.one_hot(selected_experts, self._num_experts)
        quant_mask = np.reshape(quant_mask, [-1, self._num_experts, 1])
        quant_mask_shape = quant_mask.shape
        batch_size = quant_mask.shape[0]

        if self._mode == 'predict' and batch_size == 1:
            # This implementation mimicks inference for batch_size 1.
            start_idx = selected_experts[0] * self._n_elements_in_block
            # w1 is [d_model, d_ff], w is [d_model, n_elements_in_block]
            w = jax.lax.dynamic_slice(w1, [0, start_idx],
                                      [w1.shape[0], self._n_elements_in_block])
            mid = np.dot(x, w)
            relu = np.where(mid <= 0, np.zeros_like(mid), mid)
            # w2 is [d_ff, d_model], v is [n_elements_in_block, d_model]
            v = jax.lax.dynamic_slice(
                w2, [start_idx, 0], [self._n_elements_in_block, w2.shape[-1]])
            v = np.reshape(v, [self._n_elements_in_block, -1])
            res = np.dot(relu, v) + b2
        else:
            expanded_mask = np.broadcast_to(
                quant_mask, (quant_mask_shape[0], quant_mask.shape[1],
                             self._n_elements_in_block))
            expanded_mask = np.reshape(expanded_mask, (-1, self._d_ff))
            mid = np.dot(x, w1) * expanded_mask  # [joint_batch, d_ff]
            relu = np.where(mid <= 0, np.zeros_like(mid), mid)
            res = np.dot(relu, w2) + b2

        return np.reshape(res, x_shape)  # un-flatten if needed
Example #3
0
 def entropy(self, inputs):
     (_, std) = self._params(inputs)
     return jnp.sum(jnp.exp(std) + .5 * jnp.log(2.0 * jnp.pi * jnp.e),
                    axis=-1)
Example #4
0
 def f(model_output, targets):  # pylint: disable=invalid-name
     probabilities = fastmath.expit(model_output)
     binary_entropies = -(targets * jnp.log(probabilities) + (1 - targets) *
                          (jnp.log(1 - probabilities)))
     return jnp.average(binary_entropies)
Example #5
0
def Log():
    """Returns a layer that computes the element-wise logarithm of a tensor."""
    return Fn('Log', lambda x: jnp.log(x))  # pylint: disable=unnecessary-lambda
Example #6
0
 def entropy(self, log_probs):
     del log_probs  # would be helpful if self._std was learnable
     return jnp.exp(self._std) + .5 * jnp.log(2.0 * jnp.pi * jnp.e)
def gumbel_sample(log_probs, temperature=1.0):
    """Gumbel sampling from a categorical distribution."""
    u = numpy.random.uniform(low=1e-6, high=1.0 - 1e-6, size=log_probs.shape)
    g = -np.log(-np.log(u))
    return np.argmax(log_probs + g * temperature, axis=-1)