def test_spikesorter(): spikesorter = SpikeSorter(dirname = 'datatest') print(spikesorter) spikesorter.detect_peaks_extract_waveforms(seg_nums = 'all', threshold=-4, peak_sign = '-', n_span = 2, n_left=-30, n_right=50) print(spikesorter.summary(level=1)) spikesorter.project(method = 'pca', n_components = 5) spikesorter.find_clusters(7)
def test_spikesorter_neo(): if os.path.exists('datatest_neo/data.h5'): os.remove('datatest_neo/data.h5') spikesorter = SpikeSorter(dirname = 'datatest_neo') filenames = ['Tem06c06.IOT', 'Tem06c07.IOT', 'Tem06c08.IOT', ] for filename in filenames: blocks = neo.RawBinarySignalIO(filename).read(sampling_rate = 10.*pq.kHz, t_start = 0. *pq.S, unit = pq.V, nbchannel = 16, bytesoffset = 0, dtype = 'int16', rangemin = -10, rangemax = 10) channel_indexes = np.arange(10) spikesorter.dataio.append_signals_from_neo(blocks, channel_indexes = channel_indexes, signal_type = 'unfiltered') print('### after data import ###') print(spikesorter.summary(level=1)) spikesorter.apply_filter(highpass_freq = 150., box_smooth= 3) print('### after filtering ###') print(spikesorter.summary(level=1)) spikesorter.detect_peaks_extract_waveforms(seg_nums = 'all', threshold=-5., peak_sign = '-', n_span = 2, n_left=-30, n_right=30) print('### after peak detection ###') print(spikesorter.summary(level=1)) spikesorter.project(method = 'pca', n_components = 5) spikesorter.find_clusters(10) print('### after clustering ###') print(spikesorter.summary(level=1)) spikesorter.construct_catalogue(save = True) spikesorter.appy_peeler() for seg_num in range(3): spiketrains = spikesorter.dataio.get_spiketrains(seg_num=seg_num) print(spiketrains)
def test_spikesorter(): if os.path.exists('datatest/data.h5'): os.remove('datatest/data.h5') spikesorter = SpikeSorter(dirname = 'datatest') sigs_by_trials, sampling_rate, ch_names = download_locust(trial_names = ['trial_01', 'trial_02', 'trial_03']) for seg_num in range(3): sigs = sigs_by_trials[seg_num] spikesorter.dataio.append_signals_from_numpy(sigs, seg_num = seg_num, t_start = 0.+5*seg_num, sampling_rate = sampling_rate, signal_type = 'unfiltered', channels = ch_names) print('### after data import ###') print(spikesorter) print('### after filtering ###') spikesorter.apply_filter(highpass_freq = 0., box_smooth = 3) spikesorter.detect_peaks_extract_waveforms(seg_nums = 'all', threshold=-4, peak_sign = '-', n_span = 2, n_left=-60, n_right=100) print('### after peak detection ###') print(spikesorter.summary(level=1)) spikesorter.project(method = 'pca', n_components = 5) spikesorter.find_clusters(7) print('### after clustering ###') print(spikesorter.summary(level=1)) spikesorter.construct_catalogue(save = True) spikesorter.appy_peeler() for seg_num in range(3): spiketrains = spikesorter.dataio.get_spiketrains(seg_num=seg_num) print(spiketrains)