Example #1
0
def test_batch_monte_carlo_expected_improvement_raises_for_model_with_wrong_event_shape(
) -> None:
    builder = BatchMonteCarloExpectedImprovement(100)
    data = mk_dataset([[0.0, 0.0]], [[0.0, 0.0]])
    model = _dim_two_gp()
    with pytest.raises(TF_DEBUGGING_ERROR_TYPES):
        builder.prepare_acquisition_function(data, model)
Example #2
0
def test_batch_monte_carlo_expected_improvement_raises_for_empty_data(
) -> None:
    builder = BatchMonteCarloExpectedImprovement(100)
    data = Dataset(tf.zeros([0, 2]), tf.zeros([0, 1]))
    model = QuadraticMeanAndRBFKernel()
    with pytest.raises(TF_DEBUGGING_ERROR_TYPES):
        builder.prepare_acquisition_function(data, model)
Example #3
0
def test_batch_monte_carlo_expected_improvement_raises_for_model_with_wrong_event_shape() -> None:
    builder = BatchMonteCarloExpectedImprovement(100)
    data = mk_dataset([(0.0, 0.0)], [(0.0, 0.0)])
    matern52 = tfp.math.psd_kernels.MaternFiveHalves(
        amplitude=tf.cast(2.3, tf.float64), length_scale=tf.cast(0.5, tf.float64)
    )
    model = GaussianProcess([lambda x: branin(x), lambda x: quadratic(x)], [matern52, rbf()])
    with pytest.raises(TF_DEBUGGING_ERROR_TYPES):
        builder.prepare_acquisition_function(data, model)