#gf_struct = {str(n):[0] for n in range(0,len(V))} gf_struct = [ [str(bidx), [0]] for bidx in range(0,len(V)) ] # Local Hamiltonian H = Operator() # Quantum numbers (N_up and N_down) QN = [] for b, idxs in gf_struct: QN.append(n(b,0)) p["partition_method"] = "quantum_numbers" p["quantum_numbers"] = QN mpi.report("Constructing the solver...") # Construct the solver S = SolverCore(beta=beta, gf_struct=gf_struct, n_tau=n_tau, n_iw=n_iw) mpi.report("Preparing the hybridization function...") # Set hybridization function #for m, b in enumerate(sorted(gf_struct.keys())): for m, (b, idxs) in enumerate(gf_struct): delta_w = Gf(mesh=S.G0_iw.mesh, target_shape=[]) delta_w << (V[m]**2) * inverse(iOmega_n - e[m]) S.G0_iw[b][0,0] << inverse(iOmega_n - e[m] - delta_w) mpi.report("Running the simulation...") # Solve the problem S.solve(h_int=H, **p)
def five_plus_five(use_interaction=True): results_file_name = "5_plus_5." + ("int." if use_interaction else "") + "h5" # Block structure of GF L = 2 # d-orbital spin_names = ("up", "dn") orb_names = cubic_names(L) # Input parameters beta = 40. mu = 26 U = 4.0 J = 0.7 F0 = U F2 = J * (14.0 / (1.0 + 0.63)) F4 = F2 * 0.63 # Dump the local Hamiltonian to a text file (set to None to disable dumping) H_dump = "H.txt" # Dump Delta parameters to a text file (set to None to disable dumping) Delta_dump = "Delta_params.txt" # Hybridization function parameters # Delta(\tau) is diagonal in the basis of cubic harmonics # Each component of Delta(\tau) is represented as a list of single-particle # terms parametrized by pairs (V_k,\epsilon_k). delta_params = { "xy": { 'V': 0.2, 'e': -0.2 }, "yz": { 'V': 0.2, 'e': -0.15 }, "z^2": { 'V': 0.2, 'e': -0.1 }, "xz": { 'V': 0.2, 'e': 0.05 }, "x^2-y^2": { 'V': 0.2, 'e': 0.4 } } atomic_levels = { ('up_xy', 0): -0.2, ('dn_xy', 0): -0.2, ('up_yz', 0): -0.15, ('dn_yz', 0): -0.15, ('up_z^2', 0): -0.1, ('dn_z^2', 0): -0.1, ('up_xz', 0): 0.05, ('dn_xz', 0): 0.05, ('up_x^2-y^2', 0): 0.4, ('dn_x^2-y^2', 0): 0.4 } n_iw = 1025 n_tau = 10001 p = {} p["max_time"] = -1 p["random_name"] = "" p["random_seed"] = 123 * mpi.rank + 567 p["length_cycle"] = 50 #p["n_warmup_cycles"] = 5000 p["n_warmup_cycles"] = 500 p["n_cycles"] = int(1.e1 / mpi.size) #p["n_cycles"] = int(5.e5 / mpi.size) #p["n_cycles"] = int(5.e6 / mpi.size) p["partition_method"] = "autopartition" p["measure_G_tau"] = True p["move_shift"] = True p["move_double"] = True p["measure_pert_order"] = False p["performance_analysis"] = False p["use_trace_estimator"] = False mpi.report("Welcome to 5+5 (5 orbitals + 5 bath sites) test.") gf_struct = set_operator_structure(spin_names, orb_names, False) mkind = get_mkind(False, None) H = Operator() if use_interaction: # Local Hamiltonian U_mat = U_matrix(L, [F0, F2, F4], basis='cubic') H += h_int_slater(spin_names, orb_names, U_mat, False, H_dump=H_dump) else: mu = 0. p["h_int"] = H # Quantum numbers (N_up and N_down) QN = [Operator(), Operator()] for cn in orb_names: for i, sn in enumerate(spin_names): QN[i] += n(*mkind(sn, cn)) if p["partition_method"] == "quantum_numbers": p["quantum_numbers"] = QN mpi.report("Constructing the solver...") # Construct the solver S = SolverCore(beta=beta, gf_struct=gf_struct, n_tau=n_tau, n_iw=n_iw) mpi.report("Preparing the hybridization function...") H_hyb = Operator() # Set hybridization function if Delta_dump: Delta_dump_file = open(Delta_dump, 'w') for sn, cn in product(spin_names, orb_names): bn, i = mkind(sn, cn) V = delta_params[cn]['V'] e = delta_params[cn]['e'] delta_w = Gf(mesh=MeshImFreq(beta, 'Fermion', n_iw), target_shape=[]) delta_w << (V**2) * inverse(iOmega_n - e) S.G0_iw[bn][i, i] << inverse(iOmega_n + mu - atomic_levels[(bn, i)] - delta_w) cnb = cn + '_b' # bath level a = sn + '_' + cn b = sn + '_' + cn + '_b' H_hyb += ( atomic_levels[(bn,i)] - mu ) * n(a, 0) + \ n(b,0) * e + V * ( c(a,0) * c_dag(b,0) + c(b,0) * c_dag(a,0) ) # Dump Delta parameters if Delta_dump: Delta_dump_file.write(bn + '\t') Delta_dump_file.write(str(V) + '\t') Delta_dump_file.write(str(e) + '\n') if mpi.is_master_node(): filename_ham = 'data_Ham%s.h5' % ('_int' if use_interaction else '') with HDFArchive(filename_ham, 'w') as arch: arch['H'] = H_hyb + H arch['gf_struct'] = gf_struct arch['beta'] = beta mpi.report("Running the simulation...") # Solve the problem S.solve(**p) # Save the results if mpi.is_master_node(): Results = HDFArchive(results_file_name, 'w') Results['G_tau'] = S.G_tau Results['G0_iw'] = S.G0_iw Results['use_interaction'] = use_interaction Results['delta_params'] = delta_params Results['spin_names'] = spin_names Results['orb_names'] = orb_names import __main__ Results.create_group("log") log = Results["log"] log["version"] = version.version log["triqs_hash"] = version.triqs_hash log["cthyb_hash"] = version.cthyb_hash log["script"] = inspect.getsource(__main__)
import numpy as np import pytriqs.utility.mpi as mpi from pytriqs.gf import GfImFreq, SemiCircular, inverse, iOmega_n from pytriqs.operators import n, c, c_dag from pytriqs.archive import HDFArchive from triqs_cthyb import SolverCore cp = dict(beta=10.0, gf_struct=[['up', [0]], ['do', [0]]], n_iw=1025, n_tau=2500, n_l=20) solver = SolverCore(**cp) # Set hybridization function mu = 0.5 half_bandwidth = 1.0 delta_w = GfImFreq(indices=[0], beta=cp['beta']) delta_w << (half_bandwidth / 2.0)**2 * SemiCircular(half_bandwidth) for name, g0 in solver.G0_iw: g0 << inverse(iOmega_n + mu - delta_w) sp = dict( h_int=n('up', 0) * n('do', 0) + c_dag('up', 0) * c('do', 0) + c_dag('do', 0) * c('up', 0), max_time=-1, length_cycle=50, n_warmup_cycles=50, n_cycles=500, move_double=False,
def run_calculation(use_qn=True): # Input parameters beta = 10.0 U = 2.0 mu = 1.0 epsilon = 2.3 t = 0.1 n_iw = 1025 n_tau = 10001 p = {} p["max_time"] = -1 p["random_name"] = "" p["random_seed"] = 123 * mpi.rank + 567 p["length_cycle"] = 50 p["n_warmup_cycles"] = 20000 p["n_cycles"] = 1000000 results_file_name = "spinless" if use_qn: results_file_name += ".qn" results_file_name += ".h5" mpi.report( "Welcome to spinless (spinless electrons on a correlated dimer) test.") H = U * n("tot", "A") * n("tot", "B") QN = [] if use_qn: QN.append(n("tot", "A") + n("tot", "B")) p["partition_method"] = "quantum_numbers" p["quantum_numbers"] = QN gf_struct = [["tot", ["A", "B"]]] mpi.report("Constructing the solver...") ## Construct the solver S = SolverCore(beta=beta, gf_struct=gf_struct, n_iw=n_iw, n_tau=n_tau) mpi.report("Preparing the hybridization function...") ## Set hybridization function delta_w = GfImFreq(indices=["A", "B"], beta=beta) delta_w << inverse(iOmega_n - np.array([[epsilon, -t], [-t, epsilon]]) ) + inverse(iOmega_n - np.array([[-epsilon, -t], [-t, -epsilon]])) S.G0_iw["tot"] << inverse(iOmega_n - np.array([[-mu, -t], [-t, -mu]]) - delta_w) mpi.report("Running the simulation...") ## Solve the problem S.solve(h_int=H, **p) ## Save the results if mpi.is_master_node(): with HDFArchive(results_file_name, 'w') as Results: Results["tot"] = S.G_tau["tot"]
from triqs_cthyb import SolverCore from pytriqs.operators import n, c, c_dag, Operator import pytriqs.utility.mpi as mpi from pytriqs.gf import Gf, MeshImFreq, MeshImTime, iOmega_n, inverse, Fourier, InverseFourier beta = 10.0 gf_struct = [['0', [0, 1]]] target_shape = [2, 2] nw = 48 nt = 3 * nw S = SolverCore(beta=beta, gf_struct=gf_struct, n_iw=nw, n_tau=nt) h_int = n('0', 0) * n('0', 1) wmesh = MeshImFreq(beta=beta, S='Fermion', n_max=nw) tmesh = MeshImTime(beta=beta, S='Fermion', n_max=nt) Delta_iw = Gf(mesh=wmesh, target_shape=target_shape) Ek = np.array([ [1.00, 0.75], [0.75, -1.20], ]) E_loc = np.array([ [0.2, 0.3],
def anderson(use_qn=True, use_blocks=True): spin_names = ("up","dn") mkind = lambda spin: (spin,0) if use_blocks else ("tot",spin) # Input parameters beta = 10.0 U = 2.0 mu = 1.0 h = 0.1 #V = 0.5 V = 1.0 epsilon = 2.3 n_iw = 1025 n_tau = 10001 p = {} p["max_time"] = -1 p["random_name"] = "" p["random_seed"] = 123 * mpi.rank + 567 p["length_cycle"] = 50 p["n_warmup_cycles"] = 50000 p["n_cycles"] = 5000000 p["measure_density_matrix"] = True p["use_norm_as_weight"] = True results_file_name = "anderson" if use_blocks: results_file_name += ".block" if use_qn: results_file_name += ".qn" results_file_name += ".h5" mpi.report("Welcome to Anderson (1 correlated site + symmetric bath) test.") H = U*n(*mkind("up"))*n(*mkind("dn")) QN = [] if use_qn: for spin in spin_names: QN.append(n(*mkind(spin))) p["quantum_numbers"] = QN p["partition_method"] = "quantum_numbers" gf_struct = {} for spin in spin_names: bn, i = mkind(spin) gf_struct.setdefault(bn,[]).append(i) gf_struct = [ [key, value] for key, value in gf_struct.items() ] # convert from dict to list of lists mpi.report("Constructing the solver...") # Construct the solver S = SolverCore(beta=beta, gf_struct=gf_struct, n_tau=n_tau, n_iw=n_iw) mpi.report("Preparing the hybridization function...") # Set hybridization function delta_w = Gf(mesh=MeshImFreq(beta, 'Fermion', n_iw), target_shape=[]) delta_w << (V**2) * inverse(iOmega_n - epsilon) + (V**2) * inverse(iOmega_n + epsilon) for spin in spin_names: bn, i = mkind(spin) S.G0_iw[bn][i,i] << inverse(iOmega_n + mu - {'up':h,'dn':-h}[spin] - delta_w) mpi.report("Running the simulation...") # Solve the problem S.solve(h_int=H, **p) # Save the results if mpi.is_master_node(): static_observables = {'Nup' : n(*mkind("up")), 'Ndn' : n(*mkind("dn")), 'unity' : Operator(1.0)} dm = S.density_matrix for oname in static_observables.keys(): print oname, trace_rho_op(dm,static_observables[oname],S.h_loc_diagonalization) with HDFArchive(results_file_name,'w') as Results: Results['G_tau'] = S.G_tau
# ---------------------------------------------------------------------- from pyed.OperatorUtils import relabel_operators from pyed.ParameterCollection import ParameterCollection # ---------------------------------------------------------------------- if __name__ == '__main__': if mpi.is_master_node(): with HDFArchive('data_model.h5', 'r') as A: p = A["p"] else: p = None p = mpi.bcast(p) S = SolverCore(beta=p.beta, gf_struct=p.gf_struct, n_tau=p.ntau, n_iw=p.nw) S.G0_iw['0'] << p.g0t_iw solve_parameters = dict( h_int=p.Ht_int, max_time=-1, random_name="", random_seed=123 * mpi.rank + 567, length_cycle=100, n_warmup_cycles=int(1e4), #n_cycles = int(1e9) / mpi.size, n_cycles=int(1e7) / mpi.size, move_double=True, measure_G2_iw_ph=True, measure_G2_n_fermionic=10,