Example #1
0
def make_calc(beta=2.0, nwf=8):
    
    # ------------------------------------------------------------------
    # -- Hubbard atom with two bath sites, Hamiltonian

    p = ParameterCollection(
        beta = beta,
        U = 5.0,
        nw = 1,
        nwf = nwf,
        nwf_gf = 2*nwf,
        )

    ana = analytic_hubbard_atom(**p.dict())

    p.chi = np.sum(ana.chi_m.data) / p.beta**2
    
    # ------------------------------------------------------------------
    # -- Store to hdf5
    
    filename = 'data_dynamic_beta%6.6f_nwf%i.h5' % (p.beta, p.nwf)
    with HDFArchive(filename,'w') as res:
        res['p'] = p
Example #2
0
    plt.xlabel(r'$1/n_{w}$')
    plt.ylabel(r'$\max|\Gamma_{ana} - \Gamma_{num}|$')
    plt.ylim([0, diff_vec.max()])
    plt.xlim([0, x.max()])

    plt.tight_layout()
    plt.savefig('figure_bse_hubbard_atom_convergence.pdf')
    plt.show()


# ----------------------------------------------------------------------
if __name__ == '__main__':

    p = ParameterCollection(beta=20., U=5., nw=1, nwf=20, nwf_gf=80)
    #ana = analytic_solution(**p.dict())
    ana = analytic_hubbard_atom(**p.dict())

    ana.gamma_m.data[:] -= p.U
    ana.gamma_m_num.data[:] -= p.U

    #for data in [ana.gamma_m.data, ana.gamma_m_num.data]:
    #    #print np.max(np.abs(data.imag))
    #    np.testing.assert_array_almost_equal(data.imag, np.zeros_like(data))

    diff = np.max(np.abs(ana.gamma_m_num.data.imag - ana.gamma_m.data.imag))
    print 'max(abs(Im[diff])) =', diff

    diff = np.max(np.abs(ana.gamma_m_num.data.real - ana.gamma_m.data.real))
    print 'max(abs(Re[diff])) =', diff

    #exit()
Example #3
0
    print p
    p.G_iw['up'].name = r'$G_{ctint, \uparrow}$'
    p.G_iw['dn'].name = r'$G_{ctint, \downarrow}$'

    p.chi_m = p.G2_iw[('up', 'up')] - p.G2_iw[('up', 'dn')]

    parm = ParameterCollection(
        U=p.U,
        beta=p.beta,
        nw=1,
        nwf=p.n_iw / 2,
        nwf_gf=p.n_iw,
    )

    a = analytic_hubbard_atom(**parm.dict())
    a.G_iw.name = r'$G_{analytic}$'

    plt.figure(figsize=(3.25 * 2, 3 * 2))

    subp = [2, 2, 1]

    plt.subplot(*subp)
    subp[-1] += 1

    oploti(p.G_iw)
    oploti(a.G_iw)

    plt.subplot(*subp)
    subp[-1] += 1
    diff = a.G_iw.copy()
Example #4
0
    diff = np.max(np.abs(num - ref))
    print 'diff =', diff

    parm.chi_w = chiq_sum_nu_q(parm.chi_wk)  # static suscept

    return parm


# ----------------------------------------------------------------------
if __name__ == '__main__':

    p = analytic_hubbard_atom(
        beta=1.234,
        U=5.0,
        nw=1,
        nwf=248,
        nwf_gf=2 * 248,
    )

    p = solve_lattice_bse(p)

    # -- Tracing the analytic generalized susceptibility
    p.chi_w_analytic = np.sum(p.chi_m.data) / p.beta**2

    # -- Tracing the numerical generalized susceptibility
    p.chi_w_ref = np.sum(p.chi_wk.data) / p.beta**2

    print 'chi_w_analytic =', p.chi_w_analytic
    print 'chi_w.data     =', p.chi_w.data.flatten()
    print 'chi_w_ref      =', p.chi_w_ref
            opt=opt,
            idx_labels=[r'\uparrow', r'\downarrow'])

    plt.show()


# ----------------------------------------------------------------------
if __name__ == '__main__':

    filename = 'data_pomerol.h5'
    with HDFArchive(filename, 'r') as h5:
        pom = h5['p']

    ana = analytic_hubbard_atom(beta=pom.beta,
                                U=pom.U,
                                nw=pom.nw,
                                nwf=pom.nwf,
                                nwf_gf=pom.nwf_gf)

    # -- Compare single-particle Green's functions
    np.testing.assert_array_almost_equal(pom.G_iw[0, 0].data, ana.G_iw[0,
                                                                       0].data)

    # -- Compare generalized susceptibility (magnetic channel)
    np.testing.assert_array_almost_equal(pom.chi_m.data, ana.chi_m.data)
    np.testing.assert_array_almost_equal(pom.chi0_m.data, ana.chi0_m.data)

    print 'ok! Analytic chi_m agrees with ED (pomerol).'

    plot_res(ana, pom)
Example #6
0
# ----------------------------------------------------------------------

import numpy as np
from triqs.gf import *
from triqs_tprf.analytic_hubbard_atom import analytic_hubbard_atom

# ----------------------------------------------------------------------
if __name__ == '__main__':

    nwf_vec = np.array([5, 10, 20, 40, 80, 160])
    diff_vec = np.zeros_like(nwf_vec, dtype=np.float)

    for idx, nwf in enumerate(nwf_vec):
        d = analytic_hubbard_atom(beta=2.0,
                                  U=5.0,
                                  nw=1,
                                  nwf=nwf,
                                  nwf_gf=2 * nwf)
        diff_vec[idx] = np.max(np.abs(d.gamma_m.data - d.gamma_m_num.data))
        print('nwf, diff =', idx, nwf, diff_vec[idx])

    # ------------------------------------------------------------------
    # -- Plot

    from triqs.plot.mpl_interface import oplot, oplotr, oploti, plt

    x = 1. / nwf_vec

    plt.figure(figsize=(3.25, 3))

    plt.plot(x, diff_vec, 'o-', alpha=0.75)