Example #1
0
    def test_backup(self):
        """
        Check Symbolics value are saved when engine is disable.

        * Also check reseting a disable symbolic engines doesn't crash.
        """
        inst = Instruction()
        # update RAX
        inst.setOpcodes("\x48\xFF\xC0")
        processing(inst)

        self.assertEqual(getSymbolicRegisterValue(REG.RAX), 1)

        # This call triton::api.backupSymbolicEngine()
        enableSymbolicEngine(False)

        inst = Instruction()
        # update RAX again
        inst.setOpcodes("\x48\xFF\xC0")
        processing(inst)

        self.assertEqual(getConcreteRegisterValue(REG.RAX), 2, "concrete value is updated")
        self.assertEqual(getSymbolicRegisterValue(REG.RAX), 1, "Symbolic value is not update")

        # Try to reset engine after a backup to test if the bug #385 is fixed.
        resetEngines()
Example #2
0
 def setUp(self):
     """Define and process the instruction to test."""
     setArchitecture(ARCH.X86_64)
     self.inst = Instruction()
     self.inst.setOpcodes("\x48\x01\xd8")  # add rax, rbx
     self.inst.setAddress(0x400000)
     self.inst.updateContext(Register(REG.RAX, 0x1122334455667788))
     self.inst.updateContext(Register(REG.RBX, 0x8877665544332211))
     processing(self.inst)
Example #3
0
    def test_load_ds(self):
        """Check load from ds segment."""
        setArchitecture(ARCH.X86)

        inst = Instruction()
        # mov ax, ds:word_40213C
        inst.setOpcodes("\x66\xA1\x3C\x21\x40\x00")
        processing(inst)

        self.assertEqual(inst.getOperands()[1].getAddress(), 0x40213C)
        self.assertEqual(inst.getOperands()[1].getBitSize(), 16)
Example #4
0
    def test_known_issues(self):
        """Check tainting result after processing."""
        setArchitecture(ARCH.X86)

        taintRegister(REG.EAX)
        inst = Instruction()
        # lea eax,[esi+eax*1]
        inst.setOpcodes("\x8D\x04\x06")
        processing(inst)

        self.assertTrue(isRegisterTainted(REG.EAX))
        self.assertFalse(isRegisterTainted(REG.EBX))
Example #5
0
    def test_known_issues(self):
        """Check tainting result after processing."""
        setArchitecture(ARCH.X86)

        taintRegister(REG.EAX)
        inst = Instruction()
        # lea eax,[esi+eax*1]
        inst.setOpcodes("\x8D\x04\x06")
        processing(inst)

        self.assertTrue(isRegisterTainted(REG.EAX))
        self.assertFalse(isRegisterTainted(REG.EBX))
Example #6
0
    def process_inst(self, pc=None):
        _pc = self.get_current_pc()
        if pc:
            _pc = pc

        opcodes = self.read_mem(_pc, 16)

        # Create the Triton instruction
        inst = triton.Instruction()
        inst.setOpcodes(opcodes)
        inst.setAddress(_pc)
        # execute instruction
        triton.processing(inst)
        return inst
Example #7
0
    def process_inst(self, pc=None):
        _pc = self.get_current_pc()
        if pc:
            _pc = pc

        opcodes = triton.getConcreteMemoryAreaValue(_pc, 16)

        # Create the Triton instruction
        inst = triton.Instruction()
        inst.setOpcodes(opcodes)
        inst.setAddress(_pc)
        # execute instruction
        triton.processing(inst)
        return inst
Example #8
0
    def test_load_immediate_fs(self):
        """Check load from fs segment with immediate."""
        setArchitecture(ARCH.X86_64)

        inst = Instruction()
        # mov eax, DWORD PTR fs:0xffffffffffffdf98
        inst.setOpcodes("\x64\x8B\x04\x25\x98\xDF\xFF\xFF")
        inst.setAddress(0x400000)

        setConcreteRegisterValue(Register(REG.FS, 0x7fffda8ab700))
        processing(inst)

        self.assertTrue(inst.getLoadAccess())

        load, _ = inst.getLoadAccess()[0]
        self.assertEqual(load.getAddress(), 0x7fffda8a9698)
        self.assertEqual(load.getBitSize(), 32)
Example #9
0
    def test_load_indirect_fs(self):
        """Check load from fs with indirect address."""
        setArchitecture(ARCH.X86_64)

        inst = Instruction()
        # mov rax, QWORD PTR fs:[rax]
        inst.setOpcodes("\x64\x48\x8B\x00")
        inst.setAddress(0x400000)

        setConcreteRegisterValue(Register(REG.FS, 0x7fffda8ab700))
        setConcreteRegisterValue(Register(REG.RAX, 0xffffffffffffdf90))
        processing(inst)

        self.assertTrue(inst.getLoadAccess())

        load, _ = inst.getLoadAccess()[0]
        self.assertEqual(load.getAddress(), 0x7fffda8a9690)
        self.assertEqual(load.getBitSize(), 64)
Example #10
0
    def emulate(self, pc):
        """
        Emulate every opcodes from pc.

        * Process instruction until the end and search for constraint
        resolution on cmp eax, 1 then set the new correct value and keep going.
        """
        while pc:
            # Fetch opcodes
            opcodes = getConcreteMemoryAreaValue(pc, 16)

            # Create the Triton instruction
            instruction = Instruction()
            instruction.setOpcodes(opcodes)
            instruction.setAddress(pc)

            # Process
            processing(instruction)

            # 40078B: cmp eax, 1
            # eax must be equal to 1 at each round.
            if instruction.getAddress() == 0x40078B:
                # Slice expressions
                rax = getSymbolicExpressionFromId(
                    getSymbolicRegisterId(REG.RAX))
                eax = ast.extract(31, 0, rax.getAst())

                # Define constraint
                cstr = ast.assert_(
                    ast.land(getPathConstraintsAst(),
                             ast.equal(eax, ast.bv(1, 32))))

                model = getModel(cstr)
                solution = str()
                for k, v in model.items():
                    value = v.getValue()
                    solution += chr(value)
                    getSymbolicVariableFromId(k).setConcreteValue(value)

            # Next
            pc = getConcreteRegisterValue(REG.RIP)
        return solution
Example #11
0
    def test_urem(self):
        code = [
            "\xbf\xAB\x00\x00\x00",  # mov   edi, 0xAB
            "\xf7\xff",  # idiv  edi
            "\x83\xfa\x00"  # cmp   edx, 0x00
        ]

        TT.setArchitecture(TT.ARCH.X86_64)

        rax = TT.convertRegisterToSymbolicVariable(TT.REG.RAX)
        rax = tritonast2arybo(TAst.variable(rax))
        rdx = TT.convertRegisterToSymbolicVariable(TT.REG.RDX)
        rdx = tritonast2arybo(TAst.variable(rdx))

        for opcodes in code:
            inst = TT.Instruction(opcodes)
            TT.processing(inst)

        exprs = TT.sliceExpressions(TT.getSymbolicRegisters()[TT.REG.RDX])
        e = tritonexprs2arybo(exprs)
        to_llvm_function(e, [rax.v, rdx.v])
Example #12
0
    def emulate(self, pc):
        """
        Emulate every opcodes from pc.

        * Process instruction until the end and search for constraint
        resolution on cmp eax, 1 then set the new correct value and keep going.
        """
        while pc:
            # Fetch opcodes
            opcodes = getConcreteMemoryAreaValue(pc, 16)

            # Create the Triton instruction
            instruction = Instruction()
            instruction.setOpcodes(opcodes)
            instruction.setAddress(pc)

            # Process
            processing(instruction)

            # 40078B: cmp eax, 1
            # eax must be equal to 1 at each round.
            if instruction.getAddress() == 0x40078B:
                # Slice expressions
                rax = getSymbolicExpressionFromId(getSymbolicRegisterId(REG.RAX))
                eax = ast.extract(31, 0, rax.getAst())

                # Define constraint
                cstr = ast.assert_(ast.land(getPathConstraintsAst(), ast.equal(eax, ast.bv(1, 32))))

                model = getModel(cstr)
                solution = str()
                for k, v in model.items():
                    value = v.getValue()
                    solution += chr(value)
                    getSymbolicVariableFromId(k).setConcreteValue(value)

            # Next
            pc = getConcreteRegisterValue(REG.RIP)
        return solution
Example #13
0
    def test_emulate(self, concretize=False):
        """Run a dumped simulation and check output registers."""
        # Get dumped data
        dump = os.path.join(os.path.dirname(__file__), "misc", "emu_1.dump")
        with open(dump) as f:
            regs, mems = eval(f.read())

        # Load memory
        for mem in mems:
            start = mem['start']
            if mem['memory'] is not None:
                setConcreteMemoryAreaValue(start, bytearray(mem['memory']))

        # setup registers
        for reg_name in ("rax", "rbx", "rcx", "rdx", "rdi", "rsi", "rbp",
                         "rsp", "rip", "r8", "r9", "r10", "r11", "r12", "r13",
                         "r14", "eflags", "xmm0", "xmm1", "xmm2", "xmm3",
                         "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9",
                         "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"):
            setConcreteRegisterValue(
                Register(getattr(REG, reg_name.upper()), regs[reg_name]))

        # run the code
        pc = getConcreteRegisterValue(REG.RIP)
        while pc != 0x409A18:
            opcodes = getConcreteMemoryAreaValue(pc, 20)

            instruction = Instruction()
            instruction.setOpcodes(opcodes)
            instruction.setAddress(pc)

            # Check if triton doesn't supports this instruction
            self.assertTrue(processing(instruction))

            pc = getConcreteRegisterValue(REG.RIP)

            if concretize:
                concretizeAllMemory()
                concretizeAllRegister()

        rax = getConcreteRegisterValue(REG.RAX)
        rbx = getConcreteRegisterValue(REG.RBX)
        rcx = getConcreteRegisterValue(REG.RCX)
        rdx = getConcreteRegisterValue(REG.RDX)
        rsi = getConcreteRegisterValue(REG.RSI)

        self.assertEqual(rax, 0)
        self.assertEqual(rbx, 0)
        self.assertEqual(rcx, 0)
        self.assertEqual(rdx, 0x4d2)
        self.assertEqual(rsi, 0x3669000000000000)
Example #14
0
    def test_emulate(self, concretize=False):
        """Run a dumped simulation and check output registers."""
        # Get dumped data
        dump = os.path.join(os.path.dirname(__file__), "misc", "emu_1.dump")
        with open(dump) as f:
            regs, mems = eval(f.read())

        # Load memory
        for mem in mems:
            start = mem['start']
            if mem['memory'] is not None:
                setConcreteMemoryAreaValue(start, bytearray(mem['memory']))

        # setup registers
        for reg_name in ("rax", "rbx", "rcx", "rdx", "rdi", "rsi", "rbp",
                         "rsp", "rip", "r8", "r9", "r10", "r11", "r12", "r13",
                         "r14", "eflags", "xmm0", "xmm1", "xmm2", "xmm3",
                         "xmm4", "xmm5", "xmm6", "xmm7", "xmm8", "xmm9",
                         "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"):
            setConcreteRegisterValue(Register(getattr(REG, reg_name.upper()), regs[reg_name]))

        # run the code
        pc = getConcreteRegisterValue(REG.RIP)
        while pc != 0x409A18:
            opcodes = getConcreteMemoryAreaValue(pc, 20)

            instruction = Instruction()
            instruction.setOpcodes(opcodes)
            instruction.setAddress(pc)

            # Check if triton doesn't supports this instruction
            self.assertTrue(processing(instruction))

            pc = getConcreteRegisterValue(REG.RIP)

            if concretize:
                concretizeAllMemory()
                concretizeAllRegister()

        rax = getConcreteRegisterValue(REG.RAX)
        rbx = getConcreteRegisterValue(REG.RBX)
        rcx = getConcreteRegisterValue(REG.RCX)
        rdx = getConcreteRegisterValue(REG.RDX)
        rsi = getConcreteRegisterValue(REG.RSI)

        self.assertEqual(rax, 0)
        self.assertEqual(rbx, 0)
        self.assertEqual(rcx, 0)
        self.assertEqual(rdx, 0x4d2)
        self.assertEqual(rsi, 0x3669000000000000)
Example #15
0
    def test_pop(self):
        """Check the pop instruction processing."""
        setArchitecture(ARCH.X86)

        # mov esp, 0x19fe00
        inst1 = Instruction('\xBC\x00\xFE\x19\x00')
        # mov edi, 0x19fe00
        inst2 = Instruction('\xBF\x00\xFE\x19\x00')
        # mov dword ptr [esp], 0x11111111
        inst3 = Instruction('\xC7\x04\x24\x11\x11\x11\x11')
        # pop dword ptr [edi]
        inst4 = Instruction('\x8F\x07')
        processing(inst1)
        processing(inst2)
        processing(inst3)
        processing(inst4)

        self.assertEqual(inst4.getOperands()[0].getAddress(), 0x19fe00, "poping edi doesn't change it")
        self.assertEqual(inst4.getOperands()[0].getConcreteValue(), 0x11111111, "pointed value in edi is the previously pointed value by esp")
        self.assertEqual(inst4.getStoreAccess()[0][0].getAddress(), 0x19fe00, "inst4 store the new value in 0x19fe00 (edi value)")
        self.assertEqual(inst4.getStoreAccess()[0][1].evaluate(), 0x11111111, "The stored value is 0x11111111")
Example #16
0
    def test_pop_esp(self):
        """Check pop on esp processing."""
        setArchitecture(ARCH.X86)

        # mov esp, 0x19fe00
        inst1 = Instruction('\xBC\x00\xFE\x19\x00')
        # mov dword ptr [esp], 0x11111111
        inst2 = Instruction('\xC7\x04\x24\x11\x11\x11\x11')
        # pop dword ptr [esp]
        inst3 = Instruction('\x8F\x04\x24')
        processing(inst1)
        processing(inst2)
        processing(inst3)

        self.assertEqual(inst3.getOperands()[0].getAddress(), 0x19fe04, "esp has been poped")
        self.assertEqual(inst3.getOperands()[0].getConcreteValue(), 0x11111111, "new value is still 0x11111111")
        self.assertEqual(inst3.getStoreAccess()[0][0].getAddress(), 0x19fe04, "inst3 set the value in 0x19fe04")
        self.assertEqual(inst3.getStoreAccess()[0][1].evaluate(), 0x11111111, "And this value is 0x11111111")
Example #17
0
import triton as TT
from arybo.tools import triton2arybo

TT.setArchitecture(TT.ARCH.X86_64)

TT.convertRegisterToSymbolicVariable(TT.REG.RAX)
TT.convertRegisterToSymbolicVariable(TT.REG.RBX)

inst = TT.Instruction()
inst.setOpcodes("\x48\x31\xd8")  # xor rax, rbx
TT.processing(inst)

rax_ast = TT.buildSymbolicRegister(TT.REG.RAX)
rax_ast = TT.getFullAst(rax_ast)
print(rax_ast)

e = triton2arybo(rax_ast)
print(e)
Example #18
0
    def seed_emulate(self, ip):
        """Emulate one run of the function with already setup memory."""
        function = {
            #   <serial> function
            #   push    rbp
            0x40056d: "\x55",
            #   mov     rbp,rsp
            0x40056e: "\x48\x89\xe5",
            #   mov     QWORD PTR [rbp-0x18],rdi
            0x400571: "\x48\x89\x7d\xe8",
            #   mov     DWORD PTR [rbp-0x4],0x0
            0x400575: "\xc7\x45\xfc\x00\x00\x00\x00",
            #   jmp     4005bd <check+0x50>
            0x40057c: "\xeb\x3f",
            #   mov     eax,DWORD PTR [rbp-0x4]
            0x40057e: "\x8b\x45\xfc",
            #   movsxd  rdx,eax
            0x400581: "\x48\x63\xd0",
            #   mov     rax,QWORD PTR [rbp-0x18]
            0x400584: "\x48\x8b\x45\xe8",
            #   add     rax,rdx
            0x400588: "\x48\x01\xd0",
            #   movzx   eax,BYTE PTR [rax]
            0x40058b: "\x0f\xb6\x00",
            #   movsx   eax,al
            0x40058e: "\x0f\xbe\xc0",
            #   sub     eax,0x1
            0x400591: "\x83\xe8\x01",
            #   xor     eax,0x55
            0x400594: "\x83\xf0\x55",
            #   mov     ecx,eax
            0x400597: "\x89\xc1",
            #   mov     rdx,QWORD PTR [rip+0x200aa0]        # 601040 <serial>
            0x400599: "\x48\x8b\x15\xa0\x0a\x20\x00",
            #   mov     eax,DWORD PTR [rbp-0x4]
            0x4005a0: "\x8b\x45\xfc",
            #   cdqe
            0x4005a3: "\x48\x98",
            #   add     rax,rdx
            0x4005a5: "\x48\x01\xd0",
            #   movzx   eax,BYTE PTR [rax]
            0x4005a8: "\x0f\xb6\x00",
            #   movsx   eax,al
            0x4005ab: "\x0f\xbe\xc0",
            #   cmp     ecx,eax
            0x4005ae: "\x39\xc1",
            #   je      4005b9 <check+0x4c>
            0x4005b0: "\x74\x07",
            #   mov     eax,0x1
            0x4005b2: "\xb8\x01\x00\x00\x00",
            #   jmp     4005c8 <check+0x5b>
            0x4005b7: "\xeb\x0f",
            #   add     DWORD PTR [rbp-0x4],0x1
            0x4005b9: "\x83\x45\xfc\x01",
            #   cmp     DWORD PTR [rbp-0x4],0x4
            0x4005bd: "\x83\x7d\xfc\x04",
            #   jle     40057e <check+0x11>
            0x4005c1: "\x7e\xbb",
            #   mov     eax,0x0
            0x4005c3: "\xb8\x00\x00\x00\x00",
            #   pop     rbp
            0x4005c8: "\x5d",
            #   ret
            0x4005c9: "\xc3",
        }
        while ip in function:
            # Build an instruction
            inst = Instruction()

            # Setup opcodes
            inst.setOpcodes(function[ip])

            # Setup Address
            inst.setAddress(ip)

            # Process everything
            processing(inst)

            # Next instruction
            ip = buildSymbolicRegister(REG.RIP).evaluate()
Example #19
0
    def test_exprs_xor_5C(self):
        # Based on djo's example

        # This is the xor_5C example compiled with optimisations for x86-4
        code = [
            "\x41\xB8\xE5\xFF\xFF\xFF",
            "\x89\xF8",
            "\xBA\x26\x00\x00\x00",
            "\x41\x0F\xAF\xC0",
            "\xB9\xED\xFF\xFF\xFF",
            "\x89\xC7",
            "\x89\xD0",
            "\x83\xEF\x09",
            "\x0F\xAF\xC7",
            "\x89\xC2",
            "\x89\xF8",
            "\x0F\xAF\xC1",
            "\xB9\x4B\x00\x00\x00",
            "\x8D\x44\x02\x2A",
            "\x0F\xB6\xC0",
            "\x89\xC2",
            "\xF7\xDA",
            "\x8D\x94\x12\xFF\x00\x00\x00",
            "\x81\xE2\xFE\x00\x00\x00",
            "\x01\xD0",
            "\x8D\x14\x00",
            "\x8D\x54\x02\x4D",
            "\x0F\xB6\xF2",
            "\x6B\xF6\x56",
            "\x83\xC6\x24",
            "\x83\xE6\x46",
            "\x89\xF0",
            "\x0F\xAF\xC1",
            "\xB9\xE7\xFF\xFF\xFF",
            "\x89\xC6",
            "\x89\xD0",
            "\xBA\x3A\x00\x00\x00",
            "\x0F\xAF\xC1",
            "\x89\xC1",
            "\x89\xD0",
            "\x8D\x4C\x0E\x76",
            "\xBE\x63\x00\x00\x00",
            "\x0F\xAF\xC1",
            "\x89\xC2",
            "\x89\xC8",
            "\x0F\xAF\xC6",
            "\x83\xEA\x51",
            "\xBE\x2D\x00\x00\x00",
            "\x83\xE2\xF4",
            "\x89\xC1",
            "\x8D\x4C\x0A\x2E",
            "\x89\xC8",
            "\x25\x94\x00\x00\x00",
            "\x01\xC0",
            "\x29\xC8",
            "\xB9\x67\x00\x00\x00",
            "\x0F\xAF\xC1",
            "\x8D\x48\x0D",
            "\x0F\xB6\xD1",
            "\x69\xD2\xAE\x00\x00\x00",
            "\x83\xCA\x22",
            "\x89\xD0",
            "\x41\x0F\xAF\xC0",
            "\x89\xC2",
            "\x89\xC8",
            "\x0F\xAF\xC6",
            "\x8D\x44\x02\xC2",
            "\x0F\xB6\xC0",
            "\x2D\xF7\x00\x00\x00",
            "\x69\xC0\xED\x00\x00\x00",
            "\x0F\xB6\xC0",
        ]

        TT.setArchitecture(TT.ARCH.X86_64)

        rdi = TT.convertRegisterToSymbolicVariable(TT.REG.RDI)
        rdi = tritonast2arybo(TAst.variable(rdi), use_exprs=False)

        for opcodes in code:
            inst = TT.Instruction(opcodes)
            TT.processing(inst)

        rax_ast = TT.buildSymbolicRegister(TT.REG.RAX)
        rax_ast = TT.getFullAst(rax_ast)
        rax_ast = TT.simplify(rax_ast, True)
        # Check that this gives a xor 5C
        e = tritonast2arybo(rax_ast, use_exprs=self.use_expr, use_esf=False)
        if self.use_expr:
            e = eval_expr(e)
        self.assertEqual(e, ((rdi & 0xff) ^ 0x5C).vec)
Example #20
0
 def test_mix_high_low_register(self):
     """Check operation on lower and higher register."""
     setArchitecture(ARCH.X86_64)
     inst = Instruction("\x00\xDC")  # add ah,bl
     processing(inst)
Example #21
0
    def test_mov_xmm_to_memory(self):
        """Check move and xmm register to memory do not crash."""
        setArchitecture(ARCH.X86_64)

        # movhpd QWORD PTR [rax], xmm1
        processing(Instruction("\x66\x0F\x17\x08"))
        # movhpd xmm1, QWORD PTR [rax]
        processing(Instruction("\x66\x0F\x16\x08"))
        # movhps QWORD PTR [rax], xmm1
        processing(Instruction("\x0F\x17\x08"))
        # movhps xmm1, QWORD PTR [rax]
        processing(Instruction("\x0F\x16\x08"))
        # movlpd QWORD PTR [rax], xmm1
        processing(Instruction("\x66\x0F\x13\x08"))
        # movlpd xmm1, QWORD PTR [rax]
        processing(Instruction("\x66\x0F\x12\x08"))
        # movlps QWORD PTR [rax], xmm1
        processing(Instruction("\x0F\x13\x08"))
        # movlps xmm1, QWORD PTR [rax]
        processing(Instruction("\x0F\x12\x08"))
Example #22
0
    def seed_emulate(self, ip):
        """Emulate one run of the function with already setup memory."""
        function = {
            #   <serial> function
            #   push    rbp
            0x40056d: "\x55",
            #   mov     rbp,rsp
            0x40056e: "\x48\x89\xe5",
            #   mov     QWORD PTR [rbp-0x18],rdi
            0x400571: "\x48\x89\x7d\xe8",
            #   mov     DWORD PTR [rbp-0x4],0x0
            0x400575: "\xc7\x45\xfc\x00\x00\x00\x00",
            #   jmp     4005bd <check+0x50>
            0x40057c: "\xeb\x3f",
            #   mov     eax,DWORD PTR [rbp-0x4]
            0x40057e: "\x8b\x45\xfc",
            #   movsxd  rdx,eax
            0x400581: "\x48\x63\xd0",
            #   mov     rax,QWORD PTR [rbp-0x18]
            0x400584: "\x48\x8b\x45\xe8",
            #   add     rax,rdx
            0x400588: "\x48\x01\xd0",
            #   movzx   eax,BYTE PTR [rax]
            0x40058b: "\x0f\xb6\x00",
            #   movsx   eax,al
            0x40058e: "\x0f\xbe\xc0",
            #   sub     eax,0x1
            0x400591: "\x83\xe8\x01",
            #   xor     eax,0x55
            0x400594: "\x83\xf0\x55",
            #   mov     ecx,eax
            0x400597: "\x89\xc1",
            #   mov     rdx,QWORD PTR [rip+0x200aa0]        # 601040 <serial>
            0x400599: "\x48\x8b\x15\xa0\x0a\x20\x00",
            #   mov     eax,DWORD PTR [rbp-0x4]
            0x4005a0: "\x8b\x45\xfc",
            #   cdqe
            0x4005a3: "\x48\x98",
            #   add     rax,rdx
            0x4005a5: "\x48\x01\xd0",
            #   movzx   eax,BYTE PTR [rax]
            0x4005a8: "\x0f\xb6\x00",
            #   movsx   eax,al
            0x4005ab: "\x0f\xbe\xc0",
            #   cmp     ecx,eax
            0x4005ae: "\x39\xc1",
            #   je      4005b9 <check+0x4c>
            0x4005b0: "\x74\x07",
            #   mov     eax,0x1
            0x4005b2: "\xb8\x01\x00\x00\x00",
            #   jmp     4005c8 <check+0x5b>
            0x4005b7: "\xeb\x0f",
            #   add     DWORD PTR [rbp-0x4],0x1
            0x4005b9: "\x83\x45\xfc\x01",
            #   cmp     DWORD PTR [rbp-0x4],0x4
            0x4005bd: "\x83\x7d\xfc\x04",
            #   jle     40057e <check+0x11>
            0x4005c1: "\x7e\xbb",
            #   mov     eax,0x0
            0x4005c3: "\xb8\x00\x00\x00\x00",
            #   pop     rbp
            0x4005c8: "\x5d",
            #   ret
            0x4005c9: "\xc3",
        }
        while ip in function:
            # Build an instruction
            inst = Instruction()

            # Setup opcodes
            inst.setOpcodes(function[ip])

            # Setup Address
            inst.setAddress(ip)

            # Process everything
            processing(inst)

            # Next instruction
            ip = buildSymbolicRegister(REG.RIP).evaluate()