Example #1
0
def generic_addvar_reader(fname, vname):
    '''
    Reads the time stack of additional variables.


    Parameters
    ----------
    fname : str 
        filename of data file
    
    vname : str
        variable name 
        (variable should be contained in file)


    Returns
    --------
    dset : dict
        dataset dictionary containing georef and add data.
    '''

    dset = ncio.read_icon_4d_data(fname, [
        vname,
    ], itime=None)

    geo = ncio.read_icon_georef(fname)
    geo['x'], geo['y'] = gi.ll2xyc(geo['lon'], geo['lat'])

    dset.update(geo)

    return dset
Example #2
0
def read_iconvar_vector( fname, vlist ):
    
    '''
    Input of ICON variable vector (given at original ICON grid and with applied 
    zenith angle mask).


    Parameters
    ----------
    fname : str
        name of ICON file (should be netcdf file)

    vname : list of str
        list of variable names


    Returns
    -------
    outset : dict of numpy arrays
        set of synsat and georef vectors
    '''

    
    # check if vlist is list
    # ====================
    if not type(vlist) == type([]):
        vlist = [vlist,]


    # read variables
    # =============================
    print(('... read data from ', fname))
    dset = ncio.read_icon_4d_data(fname, vlist, itime = None)


       
    # read georeference
    # ==================
    subdir =  subdir_from_fname( fname )
    geo = read_georef( subdir, mask_with_zen = False )
    

    # get zenith angle mask
    # =====================
    mask =  get_zen_mask( subdir, geo = geo )


    # prepare dict output
    # ====================
    outset = dset.copy()
    outset.update( geo )
    
    for vname in list(outset.keys()):
        outset[vname] = outset[vname].squeeze()[mask]


    return outset
Example #3
0
def read_data_field(fname, time, varname, region='full_region'):
    '''
    Reads "level2" data for analysis and plotting.


    Parameters
    ----------
    fname : str
        input data file name

    time : int or datetime object
        time index OR datetime object for which data is read

    varname : str
        name of the product read
 
    region : str, optional, default = 'full_region'
        region for which mask is input


    Returns 
    --------
    dset : dict
        dataset dictionary

    '''

    # read bt variables
    # dset = ncio.read_icon_4d_data(fname, [varname], itime = itime)
    xset = xr.open_dataset(fname)

    # time is given as index
    if type(time) == type(10):
        itime = time
        var = np.ma.masked_invalid(xset.isel(time=itime)[varname].data)
        time_obj = ncio.read_icon_time(fname, itime=itime)

    # time is given as datetime object
    elif type(time) == datetime.datetime:
        tfloat = convert_time(time)
        var = np.ma.masked_invalid(
            xset.sel(time=tfloat, method='nearest')[varname].data)
        time_obj = time

    dset = {varname: var}

    # read geo-ref
    geo = ncio.read_icon_4d_data(fname, ['lon', 'lat'], itime=None)
    dset.update(geo)

    # also get mask
    dset.update(read_mask(region=region))

    dset['time_obj'] = time_obj
    dset['time_str'] = dset['time_obj'].strftime('%Y-%m-%d %H:%M UTC')

    return dset
Example #4
0
def read_hdcp2_data(fname):
    '''
    Reads BT10.8 data from files generated by the HDCP2 O module.


    Parameters
    ----------
    fname : str
       file name


    Returns
    --------
    dset : dict
        dictionary of datasets
    '''

    # data fields ----------------------------------------------------
    vlist = ['tb108', 'lon', 'lat', 'time']
    dset = ncio.read_icon_4d_data(fname, vlist, itime=None)

    b3d = dset.pop('tb108')
    b3d = np.ma.masked_less(b3d, 100.)
    # ================================================================

    # geo ref --------------------------------------------------------
    lon, lat = dset['lon'], dset['lat']

    x, y = gi.ll2xyc(lon, lat, lon0=10, lat0=50)
    area = np.abs(gi.simple_pixel_area(lon, lat))
    # ================================================================

    # time conversions -----------------------------------------------
    abs_time = dset['time'] / (3600. * 24)
    rel_time = np.mod(abs_time, 1) * 24.

    ntime = len(rel_time)
    index_time = np.arange(ntime)
    # ================================================================

    # prepare output .................................................
    vnames = ['x', 'y', 'area', 'rel_time', 'abs_time', 'index_time']
    vvec = [x, y, area, rel_time, abs_time, index_time]
    for i, vname in enumerate(vnames):
        dset[vname] = vvec[i]

    dset['bt108'] = b3d
    dset['lsm'] = np.ones_like(x)
    dset['input_dir'] = os.path.dirname(fname)
    # ================================================================

    return dset
Example #5
0
def read_georef( expname, mask_with_zen = True, zen_max = 75. ):

    '''
    Reads geo reference of simulation.

    
    Parameters
    ----------
    expname : str
        this is the experiment name which should be equal to the subdirectory
        it is allowed to also pass the georef filename directly through this agrument

    mask_with_zen : bool, optional, default = True
        if zen mask should be applied

    zen_max : float, optional, default = 75
        maximum in satellite zenith angle (if mask_with_zen = True)


    Returns
    -------
    geo : dict of numpy arrays
    '''


    # get gridfile name
    if os.path.isfile( expname ):
        gridfile = expname
    else:
        gridfile = get_grid_filename( expname )


    # lon/lat input
    geo = ncio.read_icon_4d_data(gridfile, ['clon', 'clat'], itime = None)

    # calculate zenith angle
    clon, clat = geo['clon'], geo['clat']
    clon, clat = np.rad2deg( clon ), np.rad2deg( clat )

    geo['lon'], geo['lat'] = clon, clat
    geo['azi'], geo['zen'] = lonlat2azizen(clon, clat)
    

    # do masking with satellite zenith angle
    if mask_with_zen:
        mask = (geo['zen'] <= zen_max)

        for vname in list(geo.keys()):
            geo[vname] = geo[vname][mask]

    return geo
Example #6
0
    def read_nc(self, time):

        '''
        Reads Radolan data from HDCP2 project.
        '''
        
        
        # get name of radolan file
        fname = radoname_from_time(time, 
                                   rproduct = 'rx_hdcp2')

        # determine itime from time object
        # TODO: SIMPLE METHOD TO BE IMPROVED
        itime = 12 * time.hour + time.minute / 5
    
        vname = 'dbz'
        d = ncio.read_icon_4d_data(fname, [vname], itime = itime)[vname]
        d = np.ma.masked_invalid( d )
 
        self.data = np.ma.masked_greater_equal( d, 92)
Example #7
0
def read_cluster(fname, cname='iclust'):
    '''
    Reads Cluster Data from netcdf files.


    Parameters
    ----------
    fname : str
       file name

    cname : str, optional, default = 'iclust'
       name of cluster index variable


    Returns
    --------
    c : numpy array, int
       cluster index field
    
    '''

    c = ncio.read_icon_4d_data(fname, cname, itime=None)[cname]

    return c.astype(np.int)
def read_radiation_flux_tstack(date, 
                               fdir = gerb_like_dir,
                               georef_file = None,
                               ntimes = 24,
                               do_cutout = True):
    
    '''
    Reads and scales radiation flux data based on GERB-like SEVIRI retrievals.
    
    
    Parameters
    ----------
    date : string
        date string as %Y%m%d
        
    fdir : str, optional, default =  gerb_like_dir
        file directory name

    georef_file : str, optional, default = None
        filename where lon and lat can be found

    ntimes : int, optional, default = 24
        number of time step included (starting at mid-night)

    do_cutout : bool, optional, default = True
        if SEVIRI cutout is applied
        
        
    Returns
    -------
    dset : dict of numpy arrays, 3dim
        set of fields incl. long- and short-wave radiaton
        
    '''

    # set time ranges
    t1 = datetime.datetime.strptime( date, '%Y%m%d')
    t2 = t1 + datetime.timedelta( hours = ntimes - 1 )

    dt = datetime.timedelta( hours = 1 )


     # stack data in time loop
    dset = dict( time = [] )
    t = copy.copy(t1)
    n = 0
    while t <= t2:
        
        lwf, swf_net, swf_up = read_radiation_fluxes(t, 
                                                     fdir = fdir, 
                                                     do_cutout = do_cutout)

        # initialize -------------------------------------------------
        if n == 0:
            
            nrows, ncols = lwf.shape

            lwf_stack = np.ma.zeros( (ntimes, nrows, ncols) )
            swf_net_stack = np.ma.zeros( (ntimes, nrows, ncols) )
            swf_up_stack = np.ma.zeros( (ntimes, nrows, ncols) )
        # ============================================================

        lwf_stack[n] = lwf[:]
        swf_net_stack[n] = swf_net[:]
        swf_up_stack[n] = swf_up[:]


        dset['time'] += [ copy.copy( t ) ]

        t += dt
        n += 1

    dset['lwf'] = lwf_stack
    dset['swf_net'] = swf_net_stack
    dset['swf_up'] = swf_up_stack
    # ================================================================


    # read georef ----------------------------------------------------
    if georef_file is None:

        # hope that meteosat file is there
        georef_file = meteosat_georef_file
    
    georef = ncio.read_icon_4d_data( georef_file, ['lon', 'lat'], itime = None)

    dset.update( georef )
    # ================================================================

    return dset
Example #9
0
        except:
            pvec = np.nan * np.ones(nperc)

        pc.append(pvec)

    return pc


######################################################################
######################################################################

if __name__ == '__main__':

    # input test field
    fname = '/vols/talos/home/fabian/data/icon/narval/msevi_narval_DOM01_20160801.nc'
    b = ncio.read_icon_4d_data(fname, ['bt108'], itime=None)['bt108']
    geo = ncio.read_icon_georef(fname)

    itime = 15
    ns = 2
    da, bperc = get_area_rate(geo['clon'],
                              geo['clat'],
                              -b[itime - 1],
                              -b[itime],
                              -230,
                              vmin=-260,
                              vmax=-180,
                              cluster_method='watershed_merge',
                              ctype=4,
                              filter_method='curve',
                              marker_field='dist',
Example #10
0
def read_icon_lem_data(fname):
    '''
    Reads BT10.8 data from files generated for ICON-LEM runs.


    Parameters
    ----------
    fname : str
       file name


    Returns
    --------
    dset : dict
        dictionary of datasets
    '''

    # data fields ----------------------------------------------------
    vlist = ['bt108', 'lon', 'lat', 'time']
    dset = ncio.read_icon_4d_data(fname, vlist, itime=None)

    b3d = dset.pop('bt108')
    b3d = np.ma.masked_less(b3d, 100.)
    # ================================================================

    # geo ref --------------------------------------------------------
    lon, lat = dset['lon'], dset['lat']

    x, y = gi.ll2xyc(lon, lat, lon0=10, lat0=50)
    area = np.abs(gi.simple_pixel_area(lon, lat))
    # ================================================================

    # time conversions -----------------------------------------------
    rel_time = 24 * (dset['time'] - dset['time'][0])

    ntime = len(rel_time)
    index_time = np.arange(ntime)

    t0 = datetime.datetime(1970, 1, 1)
    abs_time = []
    for t in dset['time']:
        day = str(int(t))
        subday = np.mod(t, 1)

        tobj = datetime.datetime.strptime(day, '%Y%m%d')
        tobj += datetime.timedelta(days=subday)

        dt = (tobj - t0).total_seconds()
        abs_time.append(dt / (24. * 3600.))

    abs_time = np.array(abs_time)

    # ================================================================

    # prepare output .................................................
    vnames = ['x', 'y', 'area', 'rel_time', 'abs_time', 'index_time']
    vvec = [x, y, area, rel_time, abs_time, index_time]
    for i, vname in enumerate(vnames):
        dset[vname] = vvec[i]

    dset['bt108'] = b3d
    dset['lsm'] = np.ones_like(x)
    dset['input_dir'] = os.path.dirname(fname)
    # ================================================================

    return dset
Example #11
0
def read_narval_addvars(fname, vname, domain_center=None, region_slice=None):
    '''
    Reads the time stack of Narval data, either meteoat or synsat.


    Parameters
    ----------
    fname : str 
        filename of data file
    
    vname : str
        variable name 
        (variable should be contained in file)

    domain_center : tuple of floats, optional, default = None
        setting the projection center to (clon, clat)
        if None: not used

    region_slice : tuple of floats, optional, default = None
        cutout of fields for form  ((irow1, irow2), (icol1, icol2))
        if None: not used


    Returns
    --------
    dset : dict
        dataset dictionary containing georef and bt108 data.
    '''

    # read land sea data ---------------------------------------------
    narval_dir = '%s/icon/narval' % local_data_path
    lsm_name = '%s/aux/narval_landsea_coast_mask.h5' % narval_dir

    print '... read land-sea-mask from %s' % lsm_name
    dset = hio.read_dict_from_hdf(lsm_name)

    lsm = dset['mask50']
    # ================================================================

    # read bt108 -----------------------------------------------------
    print '... read %s from %s' % (vname, fname)
    basename, file_ext = os.path.splitext(os.path.basename(fname))

    date = basename.split('_')[-1]
    t0 = datetime.datetime.strptime(date, '%Y%m%d')

    b3d = ncio.read_icon_4d_data(fname, [
        vname,
    ], itime=None)[vname]
    b3d = np.ma.masked_invalid(b3d)

    ntime, nrow, ncol = b3d.shape
    # ================================================================

    # prepare time vector --------------------------------------------
    rel_time = np.arange(1, ntime + 1)
    index_time = np.arange(ntime)

    day_shift = t0 - datetime.datetime(1970, 1, 1)
    day_shift = day_shift.total_seconds() / (24. * 3600)

    abs_time = day_shift + rel_time / 24.
    # ================================================================

    # get georef .....................................................
    gfile = '%s/aux/target_grid_geo_reference_narval.h5' % narval_dir
    geo = hio.read_dict_from_hdf(gfile)
    lon, lat = geo['lon'], geo['lat']

    if domain_center is not None:
        mlon, mlat = domain_center
    else:
        mlon, mlat = None, None

    x, y = gi.ll2xyc(lon, lat, mlon=mlon, mlat=mlat)

    area = np.abs(gi.simple_pixel_area(x, y, xy=True))
    # ================================================================

    # prepare output .................................................
    dset = {}
    dset[vname] = b3d

    addnames = [
        'x', 'y', 'lon', 'lat', 'lsm', 'area', 'rel_time', 'abs_time',
        'index_time'
    ]
    vvec = [x, y, lon, lat, lsm, area, rel_time, abs_time, index_time]
    for i, aname in enumerate(addnames):
        dset[aname] = vvec[i]

    dset['input_dir'] = os.path.dirname(fname)
    # ================================================================

    # do cutout if wanted --------------------------------------------
    field_names = ['x', 'y', 'lon', 'lat', 'lsm', 'area', vname]

    if region_slice is not None:
        for name in field_names:
            dset[name] = gi.cutout_fields(dset[name], region_slice, vaxis=0)
    # ================================================================

    return dset
Example #12
0
def read_narval_data(fname):
    '''
    Reads the time stack of Narval data, either meteoat or synsat.

    
    Parameters
    ----------
    fname : str
       filename of data file
    
    
    Returns
    --------
    dset : dict
       dataset dictionary containing georef and bt108 data.
    '''

    # read land sea data ---------------------------------------------
    narval_dir = '%s/icon/narval' % local_data_path
    lsm_name = '%s/aux/narval_landsea_coast_mask.h5' % narval_dir

    print '... read land-sea-mask from %s' % lsm_name
    dset = hio.read_dict_from_hdf(lsm_name)

    lsm = dset['mask50']
    # ================================================================

    # read bt108 -----------------------------------------------------
    print '... read BT10.8 from %s' % fname
    basename, file_ext = os.path.splitext(os.path.basename(fname))

    date = basename.split('_')[-1]
    t0 = datetime.datetime.strptime(date, '%Y%m%d')

    # check if its is obs or sim?
    ftype = basename.split('_')[0]
    if ftype in ['msevi', 'trans']:
        subpath = None
    elif ftype == 'synsat':
        subpath = 'synsat_oper'

    # read bt108 from hdf
    if file_ext == '.h5':
        b3d = hio.read_var_from_hdf(fname, 'IR_108', subpath=subpath) / 100.
    elif file_ext == '.nc':
        vname = 'bt108'
        b3d = ncio.read_icon_4d_data(fname, vname, itime=None)[vname]

    b3d = np.ma.masked_invalid(b3d)
    b3d = np.ma.masked_less(b3d, 100.)

    ntime, nrow, ncol = b3d.shape
    # ================================================================

    # prepare time vector --------------------------------------------
    rel_time = np.arange(1, ntime + 1)
    index_time = np.arange(ntime)

    day_shift = t0 - datetime.datetime(1970, 1, 1)
    day_shift = day_shift.total_seconds() / (24. * 3600)

    abs_time = day_shift + rel_time / 24.
    # ================================================================

    # get georef .....................................................
    gfile = '%s/aux/target_grid_geo_reference_narval.h5' % narval_dir
    geo = hio.read_dict_from_hdf(gfile)
    lon, lat = geo['lon'], geo['lat']

    # centered sinusoidal
    x, y = gi.ll2xyc(lon, lat)
    area = np.abs(gi.simple_pixel_area(lon, lat))
    # ================================================================

    # prepare output .................................................
    dset = {}
    vnames = [
        'x', 'y', 'lon', 'lat', 'lsm', 'area', 'rel_time', 'abs_time',
        'index_time'
    ]
    vvec = [x, y, lon, lat, lsm, area, rel_time, abs_time, index_time]
    for i, vname in enumerate(vnames):
        dset[vname] = vvec[i]

    dset['bt108'] = b3d
    dset['input_dir'] = narval_dir
    # ================================================================

    return dset
Example #13
0
def get_highres_cma(t, region='de', scan_type='rss', arch="none"):
    '''
    Reads product of High-Res Cloud Mask product (Bley et al., 2013) for a given date.


    Parameters
    ----------
    t : datetime object 
        day and time of MSG time slot

    region : str, optional, default = 'de'
        string that defines regional cutout

    scan_type : str, optional, default = 'rss'

    arch : str, optional, default = "none"
        archive directory where NWC-SAF files are saved (OPTIONAL)


    Returns
    --------
    var : numpy array
        Cma product as field
    '''

    # set date and time strings --------------------------------------
    date_string = t.strftime('%Y/%m/%d')
    tstr = t.strftime('%Y%m%dt%H%Mz')
    time_string = tstr
    # ================================================================

    # check scan_type ................................................
    scan = scan_type.lower()

    if not scan in ('rss', 'pzs'):
        print('ERROR: scan_type %s not available')
        print('       use either "rss" or "pzs"')
        return None
    # ================================================================

    # set archive directory ------------------------------------------
    base_dir = "/vols/altair/datasets/eumcst/"

    if arch == 'none':
        arch_dir = "%s/msevi_%s/l2_hrv_products/%s/%s" % (base_dir, scan,
                                                          region, date_string)

    else:
        arch_dir = arch
    # ================================================================

    # set file name --------------------------------------------------
    prod_file = arch_dir + "/msg?-sevi-%s-l2-hrvcma-%s-%s.c2.nc" % (
        time_string, scan, region)

    # get filename while MSG number is unspecified ...................
    pfile_list = glob.glob(prod_file)

    if pfile_list:
        prod_file = pfile_list[0]
    else:
        raise Exception('ERROR: ', prod_file, ' does not exist!')
    # ================================================================

    # read variable --------------------------------------------------
    # TODO function call should updated !!!
    prod = 'clm'
    var = ncio.read_icon_4d_data(prod_file, prod, itime=None)
    # ================================================================

    return var[prod]