def main(): format = ('%(asctime)s %(processName)s:%(name)s:' '%(funcName)s:%(lineno)s:%(levelname)s: %(message)s') logging.basicConfig(level=logging.INFO, format=format) directory = os.path.join(config.PROJECT_DIRECTORY, 'scraped_data') steem = MPSteem(nodes=config.NODES) current_datetime = '2018-02-01' crossval_filename = os.path.join(directory, 'xval_{}.gz'.format(current_datetime)) post_frame = tpgd.load_or_scrape_training_data( steem, directory, current_datetime=current_datetime, days=3, offset_days=0) regressor_kwargs = dict(n_estimators=256, max_leaf_nodes=4096, max_features=0.2, n_jobs=-1, verbose=1, random_state=42, oob_score=True) # topic_kwargs = dict(num_topics=32, no_below=5, no_above=0.1) doc2vec_kwargs = dict(size=128, epochs=32) post_frame = tppp.load_or_preprocess(post_frame, crossval_filename, ncores=4, chunksize=1000, min_en_prob=0.9) param_grid = { 'feature_generation__topic_model__no_above': [0.33], #'regressor__max_leaf_nodes': [500, 1000], # 'regressor__max_features': [0.1, 0.2, 0.3] } # tpmo.cross_validate(post_frame, param_grid, topic_kwargs=topic_kwargs, # regressor_kwargs=regressor_kwargs, n_iter=None, # n_jobs=4, targets=['reward']) pipe, test_frame = tpmo.train_test_pipeline( post_frame, #topic_kwargs=topic_kwargs, regressor_kwargs=regressor_kwargs, doc2vec_kwargs=doc2vec_kwargs, targets=['reward', 'votes']) # topic_model = pipe.named_steps['feature_generation'].transformer_list[1][1] # logging.getLogger().info(topic_model.print_topics(n_best=None)) tpmo.find_truffles(test_frame, pipe)
def test_find_truffles(): posts = create_n_random_posts(300) post_frame = pd.DataFrame(posts) regressor_kwargs = dict(n_estimators=20, max_leaf_nodes=100, max_features=0.1, n_jobs=-1, verbose=1, random_state=42) topic_kwargs = dict(num_topics=50, no_below=5, no_above=0.7) post_frame = tppp.preprocess(post_frame, ncores=4, chunksize=50) pipeline = tpmo.train_pipeline(post_frame, topic_kwargs=topic_kwargs, regressor_kwargs=regressor_kwargs) posts = create_n_random_posts(50) post_frame = pd.DataFrame(posts) post_frame = tppp.preprocess(post_frame, ncores=4, chunksize=50) truffles = tpmo.find_truffles(post_frame, pipeline, account='aa') assert truffles.iloc[0].rank_score == truffles.rank_score.max()
def test_find_truffles_with_real_data(steem): df = tpbg.scrape_hour_data(steem, stop_after=20) df = tppp.preprocess(df) sorted = tpmo.find_truffles(df, MockPipeline()) assert sorted.rank_score.iloc[0] == sorted.rank_score.max()
def main(): format = ('%(asctime)s %(processName)s:%(name)s:' '%(funcName)s:%(lineno)s:%(levelname)s: %(message)s') logging.basicConfig(level=logging.INFO, format=format) directory = os.path.join(config.PROJECT_DIRECTORY, 'scraped_data') crossval_filename = os.path.join(directory, 'xval_first_proto.gz') post_frame = pd.read_pickle('../scraped_data/first_post_set.gz') regressor_kwargs = dict(n_estimators=256, max_leaf_nodes=1024, max_features=0.3, n_jobs=-1, verbose=1, random_state=42) doc2vec_kwargs = dict(size=32, epochs=20) post_frame['votes'] = post_frame.reward.astype(int).astype(float) post_frame = tppp.load_or_preprocess(post_frame, crossval_filename, ncores=4, chunksize=1000, min_en_prob=0.9) # param_grid = { # #'feature_generation__topic_model__no_above':[0.05, 0.1, 0.2, 0.33], # #'feature_generation__topic_model__num_topics':[50, 100, 200], # 'regressor__max_leaf_nodes': [50, 100, 200] # # 'regressor__max_features': [0.1, 0.2, 0.3, 0.66] # } # # tpmo.cross_validate(post_frame, param_grid, topic_kwargs=topic_kwargs, # regressor_kwargs=regressor_kwargs, n_iter=None, # n_jobs=4, targets=['reward']) pipe, test_frame = tpmo.train_test_pipeline( post_frame, doc2vec_kwargs=doc2vec_kwargs, regressor_kwargs=regressor_kwargs, targets=['reward', 'votes']) tpmo.find_truffles(test_frame, pipe)
def main(): logging.basicConfig(level=logging.INFO) author, permalink, current_datetime = parse_args() if current_datetime is None: current_datetime = pd.datetime.utcnow() else: current_datetime = pd.to_datetime(current_datetime) model_directoy = os.path.join(config.PROJECT_DIRECTORY, 'trained_models') pipeline = tpmo.load_or_train_pipeline(None, model_directoy, current_datetime) steem = MPSteem(nodes=config.NODES, no_broadcast=True) posts = tpgd.get_post_data([(author, permalink)], steem, {}) posts = pd.DataFrame(posts) post_frame = tppp.preprocess(posts) tpmo.find_truffles(post_frame, pipeline)
def execute_call(comment_authors_and_permalinks, poster, pipeline, topN_permalink, max_comments, overview_permalink): """Executes the pig on duty call""" ncomments = len(comment_authors_and_permalinks) logger.info('Found {} comments mentioning {}'.format( ncomments, poster.account)) if ncomments > max_comments: logger.info('To many comments, reducing to {}'.format(max_comments)) comment_authors_and_permalinks = comment_authors_and_permalinks[: max_comments] posts = tpco.get_parent_posts(comment_authors_and_permalinks, poster.steem) initial_frame = pd.DataFrame(posts) post_frame = initial_frame.copy() post_frame = tppp.preprocess(post_frame, ncores=4) if len(post_frame): truffle_frame = tpmo.find_truffles(post_frame, pipeline, k=0, account='', add_rank_score=False) truffle_frame['passed'] = True else: truffle_frame = pd.DataFrame() filtered_posts = initial_frame[~initial_frame.index.isin(truffle_frame. index)] filtered_posts['passed'] = False combined = pd.concat([truffle_frame, filtered_posts], axis=0) topN_link = 'https://steemit.com/@{author}/{permalink}'.format( author=poster.account, permalink=topN_permalink) tpoc.post_on_call(combined, poster=poster, topN_link=topN_link, overview_permalink=overview_permalink)
def main(): """Main loop started from command line""" no_broadcast, current_datetime = parse_args() if current_datetime is None: current_datetime = pd.datetime.utcnow() else: current_datetime = pd.to_datetime(current_datetime) data_directory = os.path.join(config.PROJECT_DIRECTORY, 'scraped_data') model_directoy = os.path.join(config.PROJECT_DIRECTORY, 'trained_models') log_directory = os.path.join(config.PROJECT_DIRECTORY, 'logs') configure_logging(log_directory, current_datetime) logger.info('STARTING main script at {}'.format(current_datetime)) if no_broadcast: logger.info('Run without broadcasting.') else: logger.info('ATTENTION I WILL BROADCAST TO STEEMIT!!!') time.sleep(2) steem = MPSteem(nodes=config.NODES, no_broadcast=no_broadcast) # hack to allow for payments, because of https://github.com/steemit/steem-python/issues/191 noapisteem = MPSteem(nodes=config.NODES[1:], no_broadcast=no_broadcast) # To post stuff account = config.ACCOUNT poster = Poster(account=account, steem=noapisteem) tppd.create_wallet(steem, config.PASSWORD, posting_key=config.POSTING_KEY, active_key=config.ACTIVE_KEY) logger.info('Paying out investors') tpde.pay_delegates( account=account, steem=noapisteem, # use a steem instance without api.steem! current_datetime=current_datetime) if not tpmo.model_exists(current_datetime, model_directoy): post_frame = load_and_preprocess_2_frames( log_directory=log_directory, current_datetime=current_datetime, steem=steem, noapisteem=noapisteem, data_directory=data_directory) logger.info('Garbage collecting') gc.collect() else: post_frame = None regressor_kwargs = dict(n_estimators=256, max_leaf_nodes=5000, max_features=0.2, n_jobs=-1, verbose=1, random_state=42) topic_kwargs = dict(num_topics=128, no_below=7, no_above=0.1, ngrams=(1, 2), keep_n=333000) if post_frame is not None and len(post_frame) > MAX_DOCUMENTS: logger.info('Frame has {} Documents, too many, ' 'reducing to {}'.format(len(post_frame), MAX_DOCUMENTS)) post_frame.sort_values('created', inplace=True, ascending=False) train_frame = post_frame.iloc[:MAX_DOCUMENTS, :] else: train_frame = post_frame pipeline = tpmo.load_or_train_pipeline( train_frame, model_directoy, current_datetime, regressor_kwargs=regressor_kwargs, topic_kwargs=topic_kwargs, targets=['adjusted_reward', 'adjusted_votes']) tpmo.log_pipeline_info(pipeline=pipeline) overview_permalink = tppw.return_overview_permalink_if_exists( account=account, current_datetime=current_datetime, steem=steem) if not overview_permalink: if post_frame is None: logger.info('Need to reaload data for weekly overview') post_frame = load_and_preprocess_2_frames( log_directory=log_directory, current_datetime=current_datetime, steem=steem, noapisteem=noapisteem, data_directory=data_directory) logger.info('I want to post my weekly overview') overview_permalink = tppw.post_weakly_update( pipeline=pipeline, post_frame=post_frame, poster=poster, current_datetime=current_datetime) logger.info('Garbage collecting') del post_frame gc.collect() prediction_frame = tpgd.scrape_hour_data(steem=steem, current_datetime=current_datetime, ncores=32, offset_hours=2) prediction_frame = tppp.preprocess(prediction_frame, ncores=8) sorted_frame = tpmo.find_truffles(prediction_frame, pipeline, account=account) permalink = tppd.post_topN_list(sorted_frame, poster=poster, current_datetime=current_datetime, overview_permalink=overview_permalink) tppd.comment_on_own_top_list(sorted_frame, poster=poster, topN_permalink=permalink) tppd.vote_and_comment_on_topK(sorted_frame, poster=poster, topN_permalink=permalink, overview_permalink=overview_permalink) logger.info('Computing the top trending without bidbots') logger.info('Searching for bid bots and bought votes') min_datetime = sorted_frame.created.min() max_datetime = sorted_frame.created.max() + pd.Timedelta(days=1) upvote_payments, bots = tpad.get_upvote_payments_to_bots( steem=noapisteem, min_datetime=min_datetime, max_datetime=max_datetime) logger.info('Adjusting votes and reward') sorted_frame = tppp.compute_bidbot_correction( post_frame=sorted_frame, upvote_payments=upvote_payments) tt0b.create_trending_post(sorted_frame, upvote_payments=upvote_payments, poster=poster, topN_permalink=permalink, overview_permalink=overview_permalink, current_datetime=current_datetime, bots=bots) logger.info('Done with normal duty, answering manual calls!') tfod.call_a_pig(poster=poster, pipeline=pipeline, topN_permalink=permalink, current_datetime=current_datetime, offset_hours=2, hours=24, overview_permalink=overview_permalink) logger.info('Cleaning up after myself') tfut.clean_up_directory(model_directoy, keep_last=3) tfut.clean_up_directory(data_directory, keep_last=25) tfut.clean_up_directory(log_directory, keep_last=14) logger.info('Preloading -8 days for later training') tpgd.load_or_scrape_training_data(steem, data_directory, current_datetime=current_datetime, days=1, offset_days=8, ncores=32) logger.info('DONE at {}'.format(current_datetime))