Example #1
0
def to_graphic(model):
    # singlstep test
    X, Y = valid_feeder.get_singlstep_test_data(params['test_length'])
    true_class = Y.argmax(axis=-1)
    true_value = data_util.discrete2continue(true_class, intervals)
    prob, pred_value = model.singlstep_predict(X)
    pred_class = data_util.continue2discrete(pred_value, intervals)
    print("Predicted classes of single-step test", pred_class.reshape(-1))
    # draw figure
    f1 = draw(true_value, pred_value)
    f2 = draw(true_class, pred_class, prob)
    f1.savefig(params['model_path'] +
               '.singlstep_pred.epoch{:0>4d}.jpg'.format(model.current_epoch))
    f2.savefig(
        params['model_path'] +
        '.singlstep_pred.epoch{:0>4d}.hm.jpg'.format(model.current_epoch))

    # multistep test
    X, Y = valid_feeder.get_multistep_test_data(params['test_length'])
    true_class = Y.argmax(axis=-1)
    true_value = data_util.discrete2continue(true_class, intervals)
    prob, pred_value = model.multistep_predict(X, params['test_length'])
    pred_class = data_util.continue2discrete(pred_value, intervals)
    print("Predicted classes of multi-step test", pred_class.reshape(-1))
    # draw figure
    f1 = draw(true_value, pred_value)
    f2 = draw(true_class, pred_class, prob)
    f1.savefig(params['model_path'] +
               '.multistep_pred.epoch{:0>4d}.jpg'.format(model.current_epoch))
    f2.savefig(
        params['model_path'] +
        '.multistep_pred.epoch{:0>4d}.hm.jpg'.format(model.current_epoch))
def draw_test_summary():
    # singlstep test   
    X, Y = test_feeder.get_singlstep_test_data(params['test_length'])
    true_class = Y.argmax(axis=-1)
    true_value = data_util.discrete2continue(true_class, intervals)
    prob, pred_value = model.singlstep_predict(X)
    pred_class = data_util.continue2discrete(pred_value, intervals)
    # draw figure
    f1 = draw(true_value, pred_value)
    f2 = draw(true_class, pred_class, prob)
    f1.savefig(params['model_path'] + 
        '.singlstep_pred.epoch{:0>4d}.test.jpg'.format(model.current_epoch))
    f2.savefig(params['model_path'] + 
        '.singlstep_pred.epoch{:0>4d}.hm.test.jpg'.format(model.current_epoch))

    # multistep test
    X, Y = test_feeder.get_multistep_test_data(params['test_length'])
    true = Y
    pred = model.multistep_predict(X, params['test_length'])
    # (if MCMC) prob : (length, input_size, n_classes)
    pred_class = continue2discrete(pred_value, intervals)
    # draw figure
    f1 = draw(true_value, pred_value)
    f2 = draw(true_class, pred_class, prob)
    fname1 = params['model_path'] + '.multistep_pred.epoch{:0>4d}.test.jpg' \
    .format(model.current_epoch)
    fname2 = params['model_path'] + '.multistep_pred.epoch{:0>4d}.hm.test.jpg' \
    .format(model.current_epoch)
    f1.savefig(fname1)
    f2.savefig(fname2)
Example #3
0
 def montecarlo_pred_summary(prob, pred_value, intervals):
     prob = prob.mean(axis=0)
     if params['montecarlo_pred_mode'] == 'modal':
         pred_class = continue2discrete(pred_value, intervals)
         _, l, input_size = pred_value.shape
         pred_class = mode(pred_class, axis=0)[0].reshape((l,input_size))
     elif params['montecarlo_pred_mode'] == 'mean':
         pred_class = np.vstack(
             [continue2discrete(pred_value[0,:-prob.shape[0],:], intervals),
             prob.argmax(axis=-1)])
     pred_value = discrete2continue(pred_class, intervals)
     return pred_class, pred_value, prob
Example #4
0
def draw_test_summary():
    # singlstep test
    X, Y = test_feeder.get_singlstep_test_data(params['test_length'])
    true_class = Y.argmax(axis=-1)
    true_value = data_util.discrete2continue(true_class, intervals)
    prob, pred_value = model.singlstep_predict(X)
    pred_class = data_util.continue2discrete(pred_value, intervals)
    # draw figure
    f1 = draw(true_value, pred_value)
    f2 = draw(true_class, pred_class, prob)
    f1.savefig(
        params['model_path'] +
        '.singlstep_pred.epoch{:0>4d}.test.jpg'.format(model.current_epoch))
    f2.savefig(
        params['model_path'] +
        '.singlstep_pred.epoch{:0>4d}.hm.test.jpg'.format(model.current_epoch))

    # multistep test
    X, Y = test_feeder.get_multistep_test_data(params['test_length'])
    true_class = Y.argmax(axis=-1)
    true_value = data_util.discrete2continue(true_class, intervals)
    # (if MCMC) prob : (n_samples, length, input_size, n_classes)
    # (if MCMC) pred_value : (n_samples, input_length+length, input_size)
    prob, pred_value = model.multistep_predict(X, params['test_length'])
    # (if MCMC) prob : (length, input_size, n_classes)
    if params['montecarlo']:
        prob = prob.mean(axis=0)
        if params['montecarlo_pred_mode'] == 'modal':
            pred_class = continue2discrete(pred_value, intervals)
            _, l, input_size = pred_value.shape
            pred_class = mode(pred_class, axis=0)[0].reshape((l, input_size))
        elif params['montecarlo_pred_mode'] == 'mean':
            pred_class = np.vstack(
                [true_class[:-prob.shape[0]],
                 prob.argmax(axis=-1)])
        pred_value = discrete2continue(pred_class, intervals)
    else:
        pred_class = continue2discrete(pred_value, intervals)
    # draw figure
    f1 = draw(true_value, pred_value)
    f2 = draw(true_class, pred_class, prob)
    if params['montecarlo']:
        fname1 = params['model_path'] + '.multistep_pred.epoch{:0>4d}.test.MCMC.{}.jpg' \
        .format(model.current_epoch, params['montecarlo_pred_mode'])
        fname2 = params['model_path'] + '.multistep_pred.epoch{:0>4d}.hm.test.MCMC.{}.jpg' \
        .format(model.current_epoch, params['montecarlo_pred_mode'])
    else:
        fname1 = params['model_path'] + '.multistep_pred.epoch{:0>4d}.test.jpg' \
        .format(model.current_epoch)
        fname2 = params['model_path'] + '.multistep_pred.epoch{:0>4d}.hm.test.jpg' \
        .format(model.current_epoch)
    f1.savefig(fname1)
    f2.savefig(fname2)
Example #5
0
    def on_stage_end(self, model, logs=None):
        self.SaveModel(model)

        hist = []
        if os.path.exists(params['hist_path']):
            hist = pkl.loads(open(params['hist_path'],'rb').read())
        RMSE = {'epoch' : model.current_epoch}

        # set solver with batch_size=1 and input_length=1
        solver_test._solver.set_weights(solver_train._solver.get_weights())
        model._set_solver(solver_test)

        # singlstep : deterministic predictor
        model._set_predictor(predictor_d)
        # singlstep test for trainset
        X, Y = train_feeder.get_singlstep_test_data(params['test_length'], lead_length=params['lead_length'])
        true_class = Y.argmax(axis=-1)
        true_value = data_util.discrete2continue(true_class, intervals)
        prob, pred_value = model.singlstep_predict(X, lead_length=params['lead_length'])
        solver_test._solver.reset_states()
        pred_class = data_util.continue2discrete(pred_value, intervals)
        RMSE['train.singlstep.true.value'] = true_value
        RMSE['train.singlstep.true.class'] = true_class
        RMSE['train.singlstep.pred.value'] = pred_value
        RMSE['train.singlstep.pred.class'] = pred_class
        RMSE['train.singlstep.rmse'] = self.rmse(true_value, pred_value[-true_value.shape[0]:,:])
        # singlestep test for validset.2
        X, Y = valid_feeder2.get_singlstep_test_data(params['test_length'], lead_length=params['lead_length'])
        true_class = Y.argmax(axis=-1)
        true_value = data_util.discrete2continue(true_class, intervals)
        prob, pred_value = model.singlstep_predict(X, lead_length=params['lead_length'])
        solver_test._solver.reset_states()
        pred_class = data_util.continue2discrete(pred_value, intervals)
        RMSE['valid.2.singlstep.true.value'] = true_value
        RMSE['valid.2.singlstep.true.class'] = true_class
        RMSE['valid.2.singlstep.pred.value'] = pred_value
        RMSE['valid.2.singlstep.pred.class'] = pred_class
        RMSE['valid.2.singlstep.rmse'] = self.rmse(true_value, pred_value[-true_value.shape[0]:,:])
        # singlstep test for validset.1
        X, Y = valid_feeder1.get_singlstep_test_data(params['test_length'], lead_length=params['lead_length'])
        true_class = Y.argmax(axis=-1)
        true_value = data_util.discrete2continue(true_class, intervals)
        prob, pred_value = model.singlstep_predict(X, lead_length=params['lead_length'])
        solver_test._solver.reset_states()
        pred_class = data_util.continue2discrete(pred_value, intervals)
        RMSE['valid.1.singlstep.true.value'] = true_value
        RMSE['valid.1.singlstep.true.class'] = true_class
        RMSE['valid.1.singlstep.pred.value'] = pred_value
        RMSE['valid.1.singlstep.pred.class'] = pred_class
        RMSE['valid.1.singlstep.rmse'] = self.rmse(true_value, pred_value[-true_value.shape[0]:,:])
        
        # draw figure
        f1 = self.draw(true_value, pred_value)
        f2 = self.draw(true_class, pred_class, prob)
        f1.savefig(params['model_path'] + 
            '.singlstep_pred.epoch{:0>4d}.jpg'.format(model.current_epoch))
        f2.savefig(params['model_path'] + 
            '.singlstep_pred.epoch{:0>4d}.hm.jpg'.format(model.current_epoch))

        # multistep : deterministic predictor
        model._set_predictor(predictor_d)
        # multistep test for trainset
        X, Y = train_feeder.get_multistep_test_data(params['test_length'], lead_length=params['lead_length'])
        true_class = Y.argmax(axis=-1)
        true_value = data_util.discrete2continue(true_class, intervals)
        prob, pred_value = model.multistep_predict(X, length=params['test_length'], lead_length=params['lead_length'])
        solver_test._solver.reset_states()
        pred_class = data_util.continue2discrete(pred_value, intervals)
        RMSE['train.multistep.determ.true.value'] = true_value
        RMSE['train.multistep.determ.true.class'] = true_class
        RMSE['train.multistep.determ.pred.value'] = pred_value
        RMSE['train.multistep.determ.pred.class'] = pred_class
        RMSE['train.multistep.determ.rmse'] = self.rmse(true_value, pred_value[-true_value.shape[0]:,:])
        # multistep test for validset.2
        X, Y = valid_feeder2.get_multistep_test_data(params['test_length'], lead_length=params['lead_length'])
        true_class = Y.argmax(axis=-1)
        true_value = data_util.discrete2continue(true_class, intervals)
        prob, pred_value = model.multistep_predict(X, length=params['test_length'], lead_length=params['lead_length'])
        solver_test._solver.reset_states()
        pred_class = data_util.continue2discrete(pred_value, intervals)
        RMSE['valid.2.multistep.determ.true.value'] = true_value
        RMSE['valid.2.multistep.determ.true.class'] = true_class
        RMSE['valid.2.multistep.determ.pred.value'] = pred_value
        RMSE['valid.2.multistep.determ.pred.class'] = pred_class
        RMSE['valid.2.multistep.determ.rmse'] = self.rmse(true_value, pred_value[-true_value.shape[0]:,:])
        # multistep test for validset.1
        X, Y = valid_feeder1.get_multistep_test_data(params['test_length'], lead_length=params['lead_length'])
        true_class = Y.argmax(axis=-1)
        true_value = data_util.discrete2continue(true_class, intervals)
        prob, pred_value = model.multistep_predict(X, length=params['test_length'], lead_length=params['lead_length'])
        solver_test._solver.reset_states()
        pred_class = data_util.continue2discrete(pred_value, intervals)
        RMSE['valid.1.multistep.determ.true.value'] = true_value
        RMSE['valid.1.multistep.determ.true.class'] = true_class
        RMSE['valid.1.multistep.determ.pred.value'] = pred_value
        RMSE['valid.1.multistep.determ.pred.class'] = pred_class
        RMSE['valid.1.multistep.determ.rmse'] = self.rmse(true_value, pred_value[-true_value.shape[0]:,:])
        # draw figure
        f1 = self.draw(true_value, pred_value)
        f2 = self.draw(true_class, pred_class, prob)
        f1.savefig(params['model_path'] + 
            '.multistep_pred.determ.epoch{:0>4d}.jpg'.format(model.current_epoch))
        f2.savefig(params['model_path'] + 
            '.multistep_pred.determ.epoch{:0>4d}.hm.jpg'.format(model.current_epoch))

        def montecarlo_pred_summary(prob, pred_value, intervals):
            prob = prob.mean(axis=0)
            if params['montecarlo_pred_mode'] == 'modal':
                pred_class = continue2discrete(pred_value, intervals)
                _, l, input_size = pred_value.shape
                pred_class = mode(pred_class, axis=0)[0].reshape((l,input_size))
            elif params['montecarlo_pred_mode'] == 'mean':
                pred_class = np.vstack(
                    [continue2discrete(pred_value[0,:-prob.shape[0],:], intervals),
                    prob.argmax(axis=-1)])
            pred_value = discrete2continue(pred_class, intervals)
            return pred_class, pred_value, prob

        if params['montecarlo']:
            solver_test_mcmc._solver.set_weights(solver_train._solver.get_weights())
            model._set_solver(solver_test_mcmc)
            # multistep : MCMC predictor
            model._set_predictor(predictor_m)
            # multistep test for trainset
            X, Y = train_feeder.get_multistep_test_data(params['test_length'], lead_length=params['lead_length'])
            true_class = Y.argmax(axis=-1)
            true_value = data_util.discrete2continue(true_class, intervals)
            prob, pred_value = model.multistep_predict(X, length=params['test_length'], lead_length=params['lead_length'])
            solver_test_mcmc._solver.reset_states()
            pred_class, pred_value, prob = montecarlo_pred_summary(prob, pred_value, intervals)
            RMSE['train.multistep.mcmc.true.value'] = true_value
            RMSE['train.multistep.mcmc.true.class'] = true_class
            RMSE['train.multistep.mcmc.pred.value'] = pred_value
            RMSE['train.multistep.mcmc.pred.class'] = pred_class
            RMSE['train.multistep.mcmc.rmse'] = self.rmse(true_value, pred_value[-true_value.shape[0]:,:])
            # multistep test for validset.2
            X, Y = valid_feeder2.get_multistep_test_data(params['test_length'], lead_length=params['lead_length'])
            true_class = Y.argmax(axis=-1)
            true_value = data_util.discrete2continue(true_class, intervals)
            prob, pred_value = model.multistep_predict(X, length=params['test_length'], lead_length=params['lead_length'])
            solver_test_mcmc._solver.reset_states()
            pred_class, pred_value, prob = montecarlo_pred_summary(prob, pred_value, intervals)
            RMSE['valid.2.multistep.mcmc.true.value'] = true_value
            RMSE['valid.2.multistep.mcmc.true.class'] = true_class
            RMSE['valid.2.multistep.mcmc.pred.value'] = pred_value
            RMSE['valid.2.multistep.mcmc.pred.class'] = pred_class
            RMSE['valid.2.multistep.mcmc.rmse'] = self.rmse(true_value, pred_value[-true_value.shape[0]:,:])
            # multistep test for validset.1
            X, Y = valid_feeder1.get_multistep_test_data(params['test_length'], lead_length=params['lead_length'])
            true_class = Y.argmax(axis=-1)
            true_value = data_util.discrete2continue(true_class, intervals)
            prob, pred_value = model.multistep_predict(X, length=params['test_length'], lead_length=params['lead_length'])
            solver_test_mcmc._solver.reset_states()
            pred_class, pred_value, prob = montecarlo_pred_summary(prob, pred_value, intervals)
            RMSE['valid.1.multistep.mcmc.true.value'] = true_value
            RMSE['valid.1.multistep.mcmc.true.class'] = true_class
            RMSE['valid.1.multistep.mcmc.pred.value'] = pred_value
            RMSE['valid.1.multistep.mcmc.pred.class'] = pred_class
            RMSE['valid.1.multistep.mcmc.rmse'] = self.rmse(true_value, pred_value[-true_value.shape[0]:,:])
            # draw figure
            f1 = self.draw(true_value, pred_value)
            f2 = self.draw(true_class, pred_class, prob)
            f1.savefig(params['model_path'] + 
                '.multistep_pred.mcmc.epoch{:0>4d}.jpg'.format(model.current_epoch))
            f2.savefig(params['model_path'] + 
                '.multistep_pred.mcmc.epoch{:0>4d}.hm.jpg'.format(model.current_epoch))

        plt.close('all')

        print("\n" + "#"*80)
        print("RMSE: epoch = {}".format(RMSE['epoch']))
        print("{} | {} | {} | {}".format(
            ''.ljust(15), 'train'.ljust(15), 'valid.1'.ljust(15), 'valid.2'.ljust(10)))
        print("{} | {:>.10} | {:>.10} | {:>.10}".format(
            'singlstep'.ljust(20), 
            str(RMSE['train.singlstep.rmse']).ljust(15),
            str(RMSE['valid.1.singlstep.rmse']).ljust(15),
            str(RMSE['valid.2.singlstep.rmse']).ljust(15)))
        print("{} | {:>.10} | {:>.10} | {:>.10}".format(
            'multistep.determ'.ljust(20), 
            str(RMSE['train.multistep.determ.rmse']).ljust(15),
            str(RMSE['valid.1.multistep.determ.rmse']).ljust(15),
            str(RMSE['valid.2.multistep.determ.rmse']).ljust(15)))
        if params['montecarlo']:
            print("{} | {:>.10} | {:>.10} | {:>.10}".format(
                'multistep.mcmc'.ljust(20), 
                str(RMSE['train.multistep.mcmc.rmse']).ljust(15),
                str(RMSE['valid.1.multistep.mcmc.rmse']).ljust(15),
                str(RMSE['valid.2.multistep.mcmc.rmse']).ljust(15)))
        print("#"*80 + '\n')

        hist.append(RMSE)
        open(params['hist_path'], 'wb').write(pkl.dumps(hist))

        # set normal solver
        model._set_solver(solver_train)