Example #1
0
 def _generate_random_chromosome_(self):
     route = self.graph.nodes()
     shuffle(route)
     solution = TSPSolver.nodes_to_solution(self, route)
     TSPSolver.set_solution(self, solution[0], solution[1])
     distance = self.graph.route_distance(solution[1])
     return solution[0][:-1], distance
Example #2
0
 def _complete_generation_(self, population, new_population):
     elite = sorted(population, key=lambda tup: tup[1])[0]
     solution = TSPSolver.nodes_to_solution(self, elite[0])
     TSPSolver.set_solution(self, solution[0], solution[1])
     s_population = sorted(new_population, key=lambda tup: tup[1])[::-1]
     new_population[new_population.index(s_population[0])] = elite
     return new_population
Example #3
0
 def __init__(self,
              graph,
              params=_defaul_params_,
              conditions={},
              absolute_mute=False):
     TSPSolver.__init__(self, graph, conditions, absolute_mute)
     self.initial_temp = _defaul_params_['initial_temp']
     self.decrement = _defaul_params_['decrement']
     self.t = self.initial_temp
Example #4
0
 def __init__(self, graph, g_args, conditions, absolute_mute=False):
     TSPSolver.__init__(self, graph, conditions, absolute_mute)
     self._g_args = g_args
     self._chromosomes = g_args.get_chr()
     self._cr = g_args.get_cr()
     self._mr = g_args.get_mr()
     self._initial_population_method = _get_method(
         g_args.get_method_initial_population())
     self._selection_method = _get_method(g_args.get_method_select())
     self._crossover_method = _get_method(g_args.get_method_cross())
     self._mutation_method = _get_method(g_args.get_method_mutate())
     self._validate()
Example #5
0
 def _initial_population_from_acs_(self):
     self._acs_.solve()
     population = []
     for ant in self._acs_.ants.values():
         route = ant.route[:-1]
         solution = TSPSolver.nodes_to_solution(self, route)
         TSPSolver.set_solution(self, solution[0], solution[1])
         distance = self.graph.route_distance(solution[1])
         population.append((solution[0][:-1], distance))
     while len(population) < self._chromosomes_:
         population.append(self._generate_random_chromosome_())
     return population
Example #6
0
 def get_solution(self):
     self.display_method = "Simulated annealing"
     self.display_parameters = {
         'initial_temp': self.initial_temp,
         'decrement': self.decrement
     }
     return TSPSolver.get_solution(self)
Example #7
0
 def _initial_population_using_ants(self, num_ants, beta):
     population = []
     ants = {}
     for a in xrange(0, num_ants):
         ants[a] = Ant(self.graph, self.graph.nodes())
     for _ in xrange(num_ants, self._chromosomes):
         population.append(self._generate_random_chromosome())
     for ant in ants.itervalues():
         ant.start()
         while len(ant.remaining_cities()) > 0:
             self._initial_population_try_to_visit_city(ant)
         route = ant.route[:]
         solution = TSPSolver.nodes_to_solution(self, route)
         TSPSolver.set_solution(self, solution[0], solution[1])
         distance = self.graph.route_distance(solution[1])
         population.append((solution[0][:-1], distance))
     return population
Example #8
0
 def __init__(self, graph, params, conditions, absolute_mute=False):
     TSPSolver.__init__(self, graph, conditions, absolute_mute)
     if params['chromosomes'] % 2 != 0:
         raise Exception("chromosomes % 2 != 0")
     self._chromosomes_ = params['chromosomes']
     self._cr_ = params['cr']
     self._mr_ = params['mr']
     self._selection_method_ = _method_map_[params['selection_method']]
     self._crossover_method_ = _method_map_[params['crossover_method']]
     self._mutation_method_ = _method_map_[params['mutation_method']]
     self._params_ = params
     self._acs_ = None
     if 'use_acs' in params:
         self._acs_ = params['use_acs']
     self._dynamic_params_ = None
     if 'dynamic_params' in params:
         self._dynamic_params_ = params['dynamic_params']
Example #9
0
 def get_solution(self):
     self.display_method = "Genetic algorithm"
     self.display_parameters = {
         'cr': self._cr_,
         'mr': self._mr_,
         'chromosomes': self._chromosomes_,
         'selection_method': self._params_['selection_method'],
         'crossover_method': self._params_['crossover_method'],
         'mutation_method': self._params_['mutation_method']
     }
     return TSPSolver.get_solution(self)
Example #10
0
 def solve(self, show_progress=False):
     self.show_progress = show_progress
     TSPSolver.start_solving(self)
     last_solution = self._new_solution_()
     while not self._conditions_met_():
         TSPSolver.update_progress(
             self, "> Temp. = {0}, last solution - {1}".format(
                 round(self.t, 3), last_solution))
         new_solution = self._new_solution_(last_solution)
         TSPSolver.set_solution(self, new_solution[0], new_solution[1])
         if self._accept_(last_solution, new_solution) is True:
             last_solution = new_solution
         self.t = self.t * self.decrement
     TSPSolver.end_solving(self)
Example #11
0
 def solve(self, show_progress=False, absolute_mute=False):
     self.show_progress = show_progress
     TSPSolver.start_solving(self)
     population = None
     while not self._conditions_met_():
         TSPSolver.update_progress(self)
         if population is None:
             if self._acs_ is None:
                 population = []
                 for _ in xrange(0, self._chromosomes_):
                     population.append(self._generate_random_chromosome_())
             else:
                 population = self._initial_population_from_acs_()
         else:
             new_population = []
             while len(new_population) < len(population):
                 chrom_a, chrom_b = self._selection_method_(population)
                 if self._do_crossover_():
                     chrom_a, chrom_b = self._crossover_(chrom_a, chrom_b)
                     if self._do_mutation_():
                         chrom_a, chrom_b = self._mutate_(chrom_a, chrom_b)
                 new_population.append(chrom_a)
                 new_population.append(chrom_b)
             population = self._complete_generation_(population,
                                                     new_population)
     TSPSolver.end_solving(self)
Example #12
0
 def solve(self, show_progress=False):
     self.show_progress = show_progress
     TSPSolver.start_solving(self)
     all_nodes = range(0, len(self.graph.nodes()))
     combinations = permutations(all_nodes)
     for combination in combinations:
         TSPSolver.update_progress(self,
                                   "Combination - %s" % (combination, ))
         if TSPSolver.conditions_met(self):
             self.solution_canceled = True
             break
         last_node = combination[0]
         full_route = [last_node]
         for i in xrange(1, len(combination)):
             next_node = combination[i]
             full_route += shortest_path(self.graph, last_node,
                                         next_node)[1:]
             last_node = next_node
         route = list(combination)
         route.append(combination[0])
         full_route += shortest_path(self.graph, last_node,
                                     combination[0])[1:]
         TSPSolver.set_solution(self, route, full_route)
     TSPSolver.end_solving(self)
Example #13
0
 def solve(self, show_progress=False, absolute_mute=False):
     self.show_progress = show_progress
     TSPSolver.start_solving(self)
     population = None
     while not TSPSolver.conditions_met(self):
         TSPSolver.update_progress(self)
         if population is None:
             population = self._generate_initial_population()
             continue
         new_population = []
         while len(new_population) < len(population):
             chrom_a, chrom_b = self._select(population)
             if self._do_crossover():
                 chrom_a, chrom_b = self._crossover(chrom_a, chrom_b)
                 if self._do_mutation():
                     chrom_a, chrom_b = self._mutate(chrom_a, chrom_b)
             new_population.append(chrom_a)
             new_population.append(chrom_b)
         population = self._complete_generation(population, new_population)
     TSPSolver.end_solving(self)
Example #14
0
 def get_solution(self):
     self.display_method = "Genetic"
     self.display_parameters = {
         'cr':
         self._cr,
         'mr':
         self._mr,
         'chromosomes':
         self._chromosomes,
         'initial_population_method':
         self._g_args.get_method_initial_population(),
         'selection_method':
         self._g_args.get_method_select(),
         'crossover_method':
         self._g_args.get_method_cross(),
         'mutation_method':
         self._g_args.get_method_mutate()
     }
     if (self._g_args.get_method_initial_population() ==
             INITIAL_POPULATION_SEMIACS):
         self.display_parameters['initial_ants'] = \
             self._g_args.get_initial_ants()
     return TSPSolver.get_solution(self)
Example #15
0
 def get_solution(self):
     self.display_method = "Brute force"
     self.display_parameters = {'solution_canceled': self.solution_canceled}
     return TSPSolver.get_solution(self)
Example #16
0
 def __init__(self, graph, conditions={}):
     TSPSolver.__init__(self, graph, conditions)
     self.solution_canceled = False
Example #17
0
 def _conditions_met_(self):
     if TSPSolver.conditions_met(self) is True:
         return True
     if self.t <= 1:
         return True
     return False
Example #18
0
 def _conditions_met_(self):
     return TSPSolver.conditions_met(self)
Example #19
0
 def _route_to_chromosome_(self, route):
     solution = TSPSolver.nodes_to_solution(self, route)
     TSPSolver.set_solution(self, solution[0], solution[1])
     return solution[0][:-1], self.graph.route_distance(solution[1])