Example #1
0
 def __init__(self):
     # Load the initialization file.
     configuration_filepath = os.path.dirname(os.path.realpath(__file__)) + \
         os.sep + 'nlp_pipeline.config'
     self.models = {}
     self.load_configuration_file(configuration_filepath)
     self.turbo_interface = tp.PTurboParser()
     self.workers = {}
Example #2
0
    def __init__(self, tagger, lemmatizer, model_file):
        self.tagger = tagger
        self.lemmatize = lemmatizer.lemmatize if lemmatizer else lambda w, t: '_'

        import turboparser
        self._pturboparser = turboparser.PTurboParser()
        self.interface = self._pturboparser.create_parser()
        self.interface.load_parser_model(model_file)
Example #3
0
 def __init__(self):
     self.turbo_interface = tp.PTurboParser()
     self.workers = {}
Example #4
0
 def __init__(self,configuration_filepath):
     # Load the initialization file.
     self.models = {}
     self.load_configuration_file(configuration_filepath)
     self.turbo_interface = tp.PTurboParser()
     self.workers = {}
from settings import *
from sys import stderr


def print(text):
    stderr.write(text + '\n')


print('PREPARING TURBOPARSER')
import turboparser
turbo_interface = turboparser.PTurboParser()
print('TURBOPARSER PREPARED')

print('LOADING TOKENIZERS')
import nltk
sentence_tokenizer = nltk.data.load(tokenizer_model)
word_tokenizer = nltk.TreebankWordTokenizer()
print('TOKENIZERS LOADED')

if 'TAG' in implemented_methods or 'LEMMATIZE' in implemented_methods:
    print('LOADING TAGGER')
    tagger = turbo_interface.create_tagger()
    tagger.load_tagger_model(b_tagger_model)
    print('TAGGER LOADED')

if 'LEMMATIZE' in implemented_methods or 'TAG' in implemented_methods or 'PARSE' in implemented_methods:
    print('LOADING LEMMATIZER')
    from lemmatizer import lemmatize
    print('LEMMATIZER LOADED')

if 'PARSE' in implemented_methods: