def _make_bias(self, params): bias = [] for i in range(params.num_layers): bias.append(L.RNNParameterSet( np.random.rand(params.hidden_size).astype(np.float32), np.random.rand(params.hidden_size).astype(np.float32))) return bias
def _make_weights(self, params, skip=False): weights = [] for i in range(params.num_layers): w_out = params.hidden_size w_in = params.hidden_size if i > 0 or skip else params.data_size weights.append(L.RNNParameterSet( np.random.rand(w_out, w_in).astype(np.float32), np.random.rand(w_out, w_out).astype(np.float32))) return weights