Example #1
0
 def Get_5_10_20_data(self, code, start, end):
     data_5_data = ts.get_hist_data(code, start=start, end=end)
     #防止过多拉取数据源 网站屏蔽IP
     cons = ts.get_apis()
     # 增加前复权 adj='qfq' 后复权 adj='hfq'(bob_jie : 2017-11-01)
     data_5_data = ts.bar(code,
                          conn=cons,
                          start_date=start,
                          adj='qfq',
                          end_date=end,
                          ma=[5, 10, 20],
                          factors=['vr', 'tor'])
     try:
         data_5_data.values[0][0]
     except Exception as e:
         time.sleep(2)
         #防止过多拉取数据源 网站屏蔽IP
         cons = ts.get_apis()
         # 增加前复权 adj='qfq' 后复权 adj='hfq'(bob_jie : 2017-11-01)
         data_5_data = ts.bar(code,
                              conn=cons,
                              start_date=start,
                              adj='qfq',
                              end_date=end,
                              ma=[5, 10, 20],
                              factors=['vr', 'tor'])
     ts.get_h_data('002337', autype='qfq')
     Mysql().SaveMySqlTWO(data_5_data, 'Stock_Basics_Info_All',
                          code + 'stock_basics', code)
Example #2
0
def break_monitor(code, warning_vol):
    start = True
    start_monitor = True
    waiting_time = datetime.datetime.now()
    conn = ts.get_apis()
    while 1:
        current = datetime.datetime.now()
        try:
            if start_monitor:
                try:
                    df = ts.quotes(code, conn=conn)
                except Exception as e:
                    print(e)
                    time.sleep(EXCEPTION_TIME_OUT)
                    conn = ts.get_apis()
                    continue
                print('under monitor {}'.format(current))

            if df['bid_vol1'].values[0] < warning_vol and start:
                title=code+' Buy +1 : '+str(df['bid_vol1'].values[0])
                sendmail(title,title)
                # msg.send_ceiling(code, df['bid_vol1'].values[0])
                start = False
                start_monitor = False
                waiting_time = current + datetime.timedelta(seconds=TIME_RESET)
            time.sleep(NORMAL_TIME_OUT)
        except Exception as e:
            print(e)
            time.sleep(EXCEPTION_TIME_OUT)
            conn = ts.get_apis()
            continue
        if current > waiting_time:
            start = True
            start_monitor = True
Example #3
0
 def _get_cons(self):
     con1 = ts.get_apis()
     con2 = ts.get_apis()
     con3 = ts.get_apis()
     con4 = ts.get_apis()
     con5 = ts.get_apis()
     return [con1, con2, con3, con4, con5]
Example #4
0
    def get_realtime_info(self, codes, has_sent, types, stock, yjl, percent):

        try:
            price_df = ts.quotes(codes, conn=self.api)

        except Exception as  e:
            logger.error('获取可转债异常 >>>> {}'.format(e))
            try:
                self.api = ts.get_apis()
            except Exception as e:
                logger.error('异常中存在异常{}'.format(e))

            time.sleep(EXECEPTION_TIME)

        else:

            if len(price_df) != 0:
                price_df = price_df[price_df['cur_vol'] != 0]
                price_df['percent'] = (price_df['price'] - price_df['last_close']) / price_df[
                    'last_close'] * 100
                price_df['percent'] = price_df['percent'].map(lambda x: round(x, 2))
                ret_dt = \
                    price_df[
                        (price_df['percent'] > percent) | (price_df['percent'] < -1 * percent)][
                        ['code', 'price', 'percent']]

                if len(ret_dt) > 0:

                    # 提醒一次后,下一次的间隔为DELTA_TIME分钟后
                    # sent_list = []
                    for i in ret_dt['code']:

                        if has_sent[i] <= datetime.datetime.now():
                            name_list = []
                            yjl_list = []
                            name_list.append(stock[i])
                            yjl_list.append(yjl[i])
                            has_sent[i] = datetime.datetime.now() + datetime.timedelta(minutes=DELTA_TIME)

                            ret_dt1 = ret_dt[ret_dt['code'] == i]
                            ret_dt1['名称'] = name_list
                            ret_dt1['溢价率'] = yjl_list

                            name=ret_dt1['名称'].values[0]
                            price=ret_dt1['price'].values[0]
                            percent=ret_dt1['percent'].values[0]
                            yjl_v = ret_dt1['溢价率'].values[0]
                            now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')

                            content0='{t}\n{name}:价格:{price} 涨幅:{percent},溢价率:{yjl}'.format(name=name,price=price,percent=percent,yjl=yjl_v,t=now)

                            logger.info(content0)


                            try:
                                wechat.send_content(content0)

                            except Exception as e:
                                logger.info('发送微信失败')
                                logger.info(e)
Example #5
0
def write_all_stock(allAshare, lib=None):
    """
    :param allAshare: List,所有股票
    :param lib: arctic.store.version_store.VersionStore
    
    :return: succ: List, written stocks; fail: List, failed written stocks  
    """
    succ = []
    fail = []
    cons = ts.get_apis()
    if not os.path.exists(hqdir):
        os.mkdir(hqdir)

    for symbol in allAshare:
        try:
            df = ts.bar(symbol, cons, freq='D', start_date='',
                        end_date='').sort_index(ascending=True)
            if MONGO and lib:
                lib.write(symbol, df, metadata={'source': 'Tushare'})
            if CSV:
                df.to_csv(os.path.abspath("{}/{}.csv".format(hqdir, symbol)))
            print(symbol + '写入完成')
            succ.append(symbol)
        except Exception as e:
            fail.append(symbol)
            print("Failed for ", symbol, str(e))
        sleep(0.1)

    if SFL:
        write_list(succ, os.path.abspath('./hq_succ_list.txt'))
        write_list(fail, os.path.abspath('./hq_fail_list.txt'))
Example #6
0
def gjzq(file):
    df = pd.read_table(file, encoding='gbk', dtype={'证券代码': np.str})
    del df['Unnamed: 15']
    code_list = list(df['证券代码'].values)

    api = ts.get_apis()

    # 移除非法证券代码 中签
    t=[code_list.remove(i) for i in code_list.copy() if i.startswith('7') or i[:2] == '07']


    price_df = ts.quotes(code_list, conn=api)
    # 去除不合法的数据
    price_df=price_df.dropna()
    filter_df = price_df[price_df['last_close'] != 0]
    filter_df = filter_df.reset_index(drop=True)
    filter_df['percent'] = (filter_df['price'] - filter_df['last_close']) / filter_df['last_close'] * 100
    filter_df['percent'] = filter_df['percent'].map(lambda x: round(x, 2))
    ret_df = filter_df[(filter_df['percent'] > ALERT_PERCENTAGE) | (filter_df['percent'] < ALERT_PERCENTAGE*-1)]
    d = dict(zip(list(df['证券代码'].values), list(df['证券名称'])))
    ret_df['name']=ret_df['code'].map(lambda x:d.get(x))
    ret_df['amount']=ret_df['amount'].map(lambda x:round(x/10000,1))
    rename_column = {'code':'证券代码','name':'证券名称','price':'当前价格','percent':'涨幅','amount':'成交金额(万)'}

    ret_df=ret_df.rename(columns=rename_column)
    ret = ret_df[list(rename_column.values())]
    ret=ret.reset_index(drop=True)

    # 发送推送
    print(ret)

    ts.close_apis(api)
Example #7
0
 def get_ticks(self, code):  # time, price, volume, type
     date = time.strftime('%Y-%m-%d', time.localtime())
     ts_api = ts.get_apis()
     df = ts.tick(code.split('.')[0], conn=ts_api, date=date, asset='E')
     if df is None:
         df = pd.DataFrame()
     return df
Example #8
0
 def get_quotes(self, code):  # ohl+price+volume+amount+ba1-5vp
     ts_api = ts.get_apis()
     df = ts.quotes(code.split('.')[0], conn=ts_api, asset='E')
     if df is None:
         return pd.DataFrame()
     df['close'] = df.loc[:, 'price']
     return df
Example #9
0
    def __init__(self):
        app = QtWidgets.QApplication(sys.argv)
        main_window = QtWidgets.QMainWindow()
        self.ui = Ui_dog()
        self.ui.setupUi(main_window)

        # 银行基本信息目录及文件名
        self.bank_basic_info_dir = r"C:\quanttime\src\watch_time\bank_info.csv"

        # tushare connect context
        token = "17e7755e254f02cc312b8b7e22ded9a308924147f8546fdfbe653ba1"
        ts.set_token(token)
        self.cons = ts.get_apis()
        # ts 授权
        self.pro = ts.pro_api()

        # 设定默认的行情数据, 通达信默认行情源,tushare,joinquant可选
        self.ui.checkBox_4.setCheckState(QtCore.Qt.Unchecked)
        self.ui.checkBox_5.setCheckState(QtCore.Qt.Checked)
        self.ui.checkBox_7.setCheckState(QtCore.Qt.Unchecked)

        # 默认只分析重点关注的券商标的
        self.ui.checkBox.setCheckState(QtCore.Qt.Checked)

        # 银行基本信息更新按钮信号连接
        self.ui.pushButton.clicked.connect(self.update_bank_industry_table)

        # 银行分红信息及系统排名表刷新信号连接
        self.ui.pushButton_2.clicked.connect(self.update_bank_dividend)

        # 券商估值分析pushbutton按钮signal连接
        self.ui.pushButton_3.clicked.connect(self.analyze_security_valuation)

        main_window.show()
        sys.exit(app.exec_())
Example #10
0
def get_bar_realtime_code():
    ap = ts.get_apis()
    data = ts.bar('600570',
                  ap,
                  start_date='20190516',
                  end_date='20190517',
                  freq='1min')
    # if os.path.exists(filename):
    #     data.to_csv(
    #         filename,
    #         mode='a',
    #         header=False,
    #         encoding='utf-8',
    #         na_rep='NA')
    # else:
    #     data.to_csv(filename, encoding='utf-8', na_rep='NA')
    # pcolumns = data.columns
    # pindex = data.index
    # pdata = data[data.columns[0:10]]
    # pdata2 = data['首字符'] = data['code'].str[0:1]
    data['datetime'] = data.index
    # ps = data['time']
    # print(ps)
    # print(type(data.index))
    # data['time'] = pd.to_datetime(data['time'], format='%d.%m.%Y')
    # pddata =  data.loc[-1] = ptime
    # data.loc[data['首字符'] == '6', '市场'] = '1'
    # ss = data.to_json(orient='split')
    content = data_to_json(data)
    # resp = Response_headers(content)
    return content
def start():
    #获取连接备用
    cons = ts.get_apis()
    # 导入个股
    print("导入个股")
    #     codes,names,timeToMarket = importStockList()
    #     codes = ["000801"]
    #     names = ["四川九洲"]
    #     timeToMarket = [20171215]
    #000002.SZ errcode: -40521008 start_date:1993-01-23,end_date:1993-01-26
    codes = ["300251"]
    names = ["万科A"]
    timeToMarket = [19910102]
    print(len(codes), len(names), len(timeToMarket))
    importStockDataDailyWind(codes, names, timeToMarket)
    # test(codes)
    '''
    #导入指数
    print("导入指数")
    df = ts.get_index()
    codes = df["code"].values
    names = df["name"].values
    import import_Stock_Data_Daily
    import_Stock_Data_Daily.importStockDataDaily(codes,names,asset='INDEX',adj='None')
    '''
    ts.close_apis(conn=cons)
    print("导入完成")
Example #12
0
def insert_kdata(code, asset, freq, start, end):
    sheet = get_sheet(freq)
    cons = ts.get_apis()
    k_data = ts.bar(code,
                    conn=cons,
                    freq='5min',
                    start_date='2016-01-01',
                    end_date='',
                    asset=asset)
    # 对DataFrame的个别列进行重命名
    k_data = k_data.rename(columns={'code': 'code_origin'})
    # 代码
    k_data['code'] = code
    # 周期
    k_data['freq'] = freq
    # 是否指数
    k_data['asset'] = asset
    k_data = k_data[[
        'code', 'index', 'date', 'ktype', 'open', 'close', 'high', 'low',
        'volume', 'code_origin'
    ]]
    # inplace默认为False,如果该值为False,那么原来的pd顺序没变,只是返回的是排序的
    k_data.sort_values("date", ascending=False, inplace=True)
    records = pandas.io.json.loads(k_data.T.to_json()).values()
    global insert_result
    insert_result = sheet.insert_many(records, ordered=False)
    # except BulkWriteError as e:
    #     print("insert_many出现重复,忽略错误")
    return insert_result
Example #13
0
def tushare_bar(code, start, end, freq, **kwargs):
    df = ts.bar(code=code, conn = ts.get_apis(), start_date = start, end_date = end, \
            freq = freq, asset='E', adj = 'qfq', **kwargs)
    if isinstance(df, pd.DataFrame):
        return df
    else:
        raise TypeError('df is unknown type %s' % type(df))
Example #14
0
 def __init__(self):
     self.conn=ts.get_apis()
     self.available_bonds = pd.read_sql('tb_bond_jisil', engine, index_col='index')['可转债代码'].values
     self.allBonds=ts.new_cbonds(default=0,pause=2)
     self.onSellBond=self.allBonds.dropna(subset=['marketprice'])
     self.today=datetime.datetime.now().strftime('%Y-%m-%d %H:%M')
     self.total = self.onSellBond[self.onSellBond['bcode'].isin(self.available_bonds)]
Example #15
0
def Signal(coin_symbol, end_dt):
    cons = ts.get_apis()

    temp_day = ts.tick(code=coin_symbol, conn=cons, date=end_dt)
    print(temp_day)

    amount = []
    vol = []
    close = []
    for i in range(len(temp_day)):
        temp_list = temp_day.ix[i]
        amount.append(float(temp_list[1]) * float(temp_list[2]))
        vol.append(float(temp_list[2]))
        close.append(float(temp_list[1]))

    amount = np.array(amount)
    vol = np.array(vol)
    close = np.array(close)
    price_avg_long = []
    price_avg_short = []
    price_close = []
    delt_list = []
    for i in range(1, len(amount)):
        price_avg_long.append(float(amount[:i + 1].mean() /
                                    vol[:i + 1].mean()))
        price_avg_short.append(float(amount[i] / vol[i]))
        price_close.append(close[i])
        delt_list.append(
            float(amount[:i + 1].mean() / vol[:i + 1].mean()) /
            float(amount[i - 1:i].mean() / vol[i - 1:i].mean()))
    return price_avg_long, price_avg_short, price_close, delt_list
Example #16
0
def stock_plot():
    left, width = 0.1, 0.8
    rect_vol = [left, 0.1, width, 0.3]
    rect_main = [left, 0.4, width, 0.5]
    fig = plt.figure()
    conn = ts.get_apis()
    df = ts.bar('300333', conn=conn, start_date='2018-01-01')
    del df['code']
    df.reset_index(inplace=True)
    dates=df['datetime'].values

    df['datetime'] = df['datetime'].map(mdates.date2num)
    # dates=df['datetime'].values
    vol = df['vol'].values
    ax_vol = fig.add_axes(rect_vol)
    ax_vol.fill_between(dates, vol,color = 'y')
    # 横坐标时间旋转
    plt.setp(ax_vol.get_xticklabels(), rotation=30, horizontalalignment='right')
    ax_main = fig.add_axes(rect_main)
    candlestick_ochl(ax_main,df.values,width=0.6,colordown='g',colorup='r')
    ax_main.axes.get_xaxis().set_visible(False)
    ax_main.set_title("STOCK LINE")

    ts.close_apis(conn)
    plt.show()
Example #17
0
 def __init__(self):
     self.conn=ts.get_apis()
     self.available_bonds = pd.read_sql('tb_bond_jisilu', engine, index_col='index')['可转债代码'].values
     self.allBonds=ts.new_cbonds(default=0,pause=2)
     self.onSellBond=self.allBonds.dropna(subset=['marketprice'])
     self.today=datetime.datetime.now().strftime('%Y-%m-%d %H:%M')
     self.total = self.onSellBond[self.onSellBond['bcode'].isin(self.available_bonds)]
Example #18
0
    def get_price_diff(self, codes, has_sent_, types, kzz_stocks,
                       kzz_stocks_yjl):
        # 针对可转债
        try:
            df = ts.quotes(codes, conn=self.api)

        except Exception as e:
            logger.error('获取可转债异常 >>>> {}'.format(e))
            try:
                self.api = ts.get_apis()
            except Exception as e:
                logger.error('异常中存在异常{}'.format(e))

            time.sleep(EXECEPTION_TIME)

        else:
            df['bid1'] = df['bid1'].astype(float)
            df['ask1'] = df['ask1'].astype(float)
            df['diff'] = np.abs(df['bid1'] - df['ask1'])
            result = df[df['diff'] >= DIFF_V]
            if result.empty:
                # continue
                return
            else:
                for j in result['code']:

                    if has_sent_[j] <= datetime.datetime.now():
                        has_sent_[j] = datetime.datetime.now(
                        ) + datetime.timedelta(minutes=DIFF_DELTA_TIME)
                        name_list = []
                        yjl_list = []
                        name_list.append(kzz_stocks[j])
                        yjl_list.append(kzz_stocks_yjl[j])
                        ret_dt1 = result[result['code'] == j]
                        ret_dt1['名称'] = name_list
                        ret_dt1['溢价率'] = yjl_list
                        # ret_dt1 = ret_dt1.set_index('code', drop=True)

                        code = j
                        name = ret_dt1['名称'].values[0]
                        price = ret_dt1['price'].values[0]
                        bid = ret_dt1['bid1'].values[0]
                        ask = ret_dt1['ask1'].values[0]
                        diff = round(ret_dt1['diff'].values[0], 2)
                        now = datetime.datetime.now().strftime(
                            '%Y-%m-%d %H:%M:%S')
                        content0 = '{t}\n{code}::{name}:价格:{price} 买1:{bid} 卖1:{ask}差价:{diff}'.format(
                            code=code,
                            name=name,
                            price=price,
                            bid=bid,
                            ask=ask,
                            diff=diff,
                            t=now)
                        logger.info(content0)
                        try:
                            wechat.send_content(content0)
                        except Exception as e:
                            logger.info('发送微信失败')
                            logger.info(e)
Example #19
0
def downMinuteBarBySymbol(symbol):
    """下载某一合约的分钟线数据"""
    start = time()

    cl = db[symbol]
    cl.ensure_index([('datetime', ASCENDING)], unique=True)  # 添加索引
    cons = ts.get_apis()

    df = ts.bar(symbol,
                cons,
                start_date='2018-01-10',
                end_date='2018-04-09',
                freq='1min',
                asset='X')
    df = df.sort_index()

    for ix, row in df.iterrows():
        bar = generateVtBar(row)
        d = bar.__dict__
        flt = {'datetime': bar.datetime}
        cl.replace_one(flt, d, True)

    end = time()
    cost = (end - start) * 1000

    print u'合约%s数据下载完成%s - %s,耗时%s毫秒' % (symbol, df.index[0], df.index[-1],
                                         cost)
Example #20
0
def GetstockData(code,start,end=None):
    api=ts.get_apis()
    if not end:
        end = datetime.datetime.now().strftime('%Y-%m-%d')
        print(end)
    df = ts.bar(code,conn=api,freq='D',start_date=start,end_date=end)
    df.to_excel('data/'+code+'.xls')
Example #21
0
def downBarBySymbol(symbol, start_date=None, end_date=None, freq='D'):
    """下载某一合约的分钟线数据"""
    start = time()
    
    db_freq = freq
    #if freq[0] in ['0', '1', '2','3','4','5','6','7','8','9']:
        #db_freq = freq + 'MIN'
    
    db = mc[DB_NAME_DICT[db_freq]]                         # 数据库
    cl = db[symbol]
    cl.ensure_index([('datetime', ASCENDING)], unique=True)         # 添加索引


    if generateExchange(symbol)=="QH":
        asset = 'X'
    else:
        asset = 'E'
        
    asset = 'INDEX'    
    df = ts.bar(symbol, conn=ts.get_apis(), freq=freq, asset=asset, start_date=start_date, end_date=end_date, adj='qfq')
    #df = ts.get_hist_data(symbol,start=start_date, end=end_date, ktype=freq)
    
    df = df.sort_index()
    
    for ix, row in df.iterrows():
        bar = generateVtBar(row)
        d = bar.__dict__
        flt = {'datetime': bar.datetime}
        cl.replace_one(flt, d, True)            

    end = time()
    cost = (end - start) * 1000

    print u'合约%s 周期%s数据下载完成%s - %s,耗时%s毫秒' %(symbol, freq, df.index[0], df.index[-1], cost)
Example #22
0
def stock_plot():
    left, width = 0.1, 0.8
    rect_vol = [left, 0.1, width, 0.3]
    rect_main = [left, 0.4, width, 0.5]
    fig = plt.figure()
    conn = ts.get_apis()
    df = ts.bar('300333', conn=conn, start_date='2018-01-01')
    del df['code']
    df.reset_index(inplace=True)
    dates = df['datetime'].values

    df['datetime'] = df['datetime'].map(mdates.date2num)
    # dates=df['datetime'].values
    vol = df['vol'].values
    ax_vol = fig.add_axes(rect_vol)
    ax_vol.fill_between(dates, vol, color='y')
    # 横坐标时间旋转
    plt.setp(ax_vol.get_xticklabels(),
             rotation=30,
             horizontalalignment='right')
    ax_main = fig.add_axes(rect_main)
    candlestick_ochl(ax_main, df.values, width=0.6, colordown='g', colorup='r')
    ax_main.axes.get_xaxis().set_visible(False)
    ax_main.set_title("STOCK LINE")

    ts.close_apis(conn)
    plt.show()
Example #23
0
    def __init__(self):
        self.engine = get_engine('db_stock')
        self.cb_code, self.name, self.yjl = self.bond()
        self.stocks = dict(zip(self.cb_code, self.name))
        self.stocks_yjl = dict(zip(self.cb_code, self.yjl))
        self.api = ts.get_apis()

        # python3 这个返回的不是list,需要手工转换

        self.kzz_code_list = list(self.stocks.keys())
        pool_code, pool_name = self.stock_pool()
        self.pool_dict = dict(zip(pool_code, pool_name))
        self.pool_list = list(self.pool_dict.keys())

        # 添加一部分持仓数据 或者 监测仓

        self.df = pd.read_table(file, encoding='gbk', dtype={'证券代码': np.str})
        del self.df['Unnamed: 15']
        code_list = list(self.df['证券代码'].values)

        # 移除非法证券代码 中签
        t = [
            code_list.remove(i) for i in code_list.copy()
            if i.startswith('7') or i[:2] == '07'
        ]
        self.code_lists = code_list
Example #24
0
def downMinuteBarBySymbol(symbol, freq):
    """下载某一合约的分钟线数据"""
    start = time()

    cl = db[symbol]
    cl.ensure_index([('datetime', ASCENDING)], unique=True)  # 添加索引

    df = ts.bar(symbol, ts.get_apis(), freq=freq, asset='X')
    #df = ts.bar(symbol, ktype='1min')
    df = df.sort_index()

    for ix, row in df.iterrows():
        bar = generateVtBar(row)
        d = bar.__dict__
        #有的合约字母变成大写,可以自己放开这个地方
        #d['symbol'] = d['symbol'].lower()

        flt = {'datetime': bar.datetime}
        cl.replace_one(flt, d, True)

    end = time()
    cost = (end - start) * 1000

    print u'合约%s数据下载完成%s - %s,耗时%s毫秒' % (symbol, df.index[0], df.index[-1],
                                         cost)
Example #25
0
def plot_stock_line(code, name, table_name, start='2017-10-01', save=False):
    today = datetime.datetime.now().strftime('%Y-%m-%d')
    title = u'{} {} {} {}'.format(today, code, name, table_name)
    if os.path.exists(title + '.png'):
        return
    engine = get_engine('db_stock', local=True)

    fig = plt.figure(figsize=(10, 8))
    base_info = pd.read_sql('tb_basic_info', engine, index_col='index')
    # fig,(ax,ax2)=plt.subplots(2,1,sharex=True,figsize=(16,10))
    ax = fig.add_axes([0, 0.3, 1, 0.55])
    ax2 = fig.add_axes([0, 0.1, 1, 0.25])
    if code is None and name is not None:
        code = base_info[base_info['name'] == name]['code'].values[0]
        print code
    df = None
    for _ in range(4):
        api = ts.get_apis()

        try:
            df = ts.bar(code, conn=api, start_date=start)
            break
        except Exception, e:
            print e
            ts.close_apis(api)
            time.sleep(random.random() * 3)
            continue
Example #26
0
    def get_realtime_info(self, codes, has_sent, types, stock, yjl, percent):

        try:
            price_df = ts.quotes(codes, conn=self.api)

        except Exception as  e:
            logger.error('获取可转债异常 >>>> {}'.format(e))
            try:
                self.api = ts.get_apis()
            except Exception as e:
                logger.error('异常中存在异常{}'.format(e))

            time.sleep(EXECEPTION_TIME)

        else:

            if len(price_df) != 0:
                price_df = price_df[price_df['cur_vol'] != 0]
                price_df['percent'] = (price_df['price'] - price_df['last_close']) / price_df[
                    'last_close'] * 100
                price_df['percent'] = price_df['percent'].map(lambda x: round(x, 2))
                ret_dt = \
                    price_df[
                        (price_df['percent'] > percent) | (price_df['percent'] < -1 * percent)][
                        ['code', 'price', 'percent']]

                if len(ret_dt) > 0:

                    # 提醒一次后,下一次的间隔为5分钟后
                    # sent_list = []
                    for i in ret_dt['code']:

                        if has_sent[i] <= datetime.datetime.now():
                            name_list = []
                            yjl_list = []
                            name_list.append(stock[i])
                            yjl_list.append(yjl[i])
                            has_sent[i] = datetime.datetime.now() + datetime.timedelta(minutes=DELTA_TIME)

                            ret_dt1 = ret_dt[ret_dt['code'] == i]
                            ret_dt1['名称'] = name_list
                            ret_dt1['溢价率'] = yjl_list

                            name=ret_dt1['名称'].values[0]
                            price=ret_dt1['price'].values[0]
                            percent=ret_dt1['percent'].values[0]
                            yjl_v = ret_dt1['溢价率'].values[0]
                            now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')

                            content0='{t}\n{name}:价格:{price} 涨幅:{percent},溢价率:{yjl}'.format(name=name,price=price,percent=percent,yjl=yjl_v,t=now)

                            logger.info(content0)


                            try:
                                wechat.send_content(content0)

                            except Exception as e:
                                logger.info('发送微信失败')
                                logger.info(e)
Example #27
0
    def update_daily(self):

        add_cols = u'ALTER TABLE `{}` ADD `{}` FLOAT;'.format(
            self.table_name, self.today)
        self._exe(add_cols)
        # self.conn.commit()
        api = ts.get_apis()
        cmd = 'SELECT * FROM `{}`'.format(self.table_name)
        cur = self._exe(cmd)
        for i in cur.fetchall():
            (code, name, safe_price, count, profit_ratio, profit, values,
             current_price, earn) = i[:9]
            df = ts.quotes(code, conn=api)
            current_price = round(float(df['price'].values[0]), 2)
            values = current_price * count
            last_close = df['last_close'].values[0]
            earn = (current_price - last_close) * count
            profit = (current_price - safe_price) * count
            profit_ratio = round(
                float(current_price - safe_price) / safe_price * 100, 2)

            update_cmd = u'UPDATE {} SET `盈亏比例`={} ,`盈亏`={}, `市值` ={}, `现价` = {},`{}`={} where `证券代码`= {};'.format(
                self.table_name, profit_ratio, profit, values, current_price,
                self.today, earn, code)
            # print update_cmd
            self._exe(update_cmd)
        ts.close_apis(api)
Example #28
0
    def __init__(self):
        # 初始化日志
        self.regularlog = logging.getLogger("dividend_maintenance")
        self.cmdconsole = logging.StreamHandler()
        self.cmdconsole.setLevel(logging.DEBUG)
        self.formatter = logging.Formatter(
            "%(asctime)s - %(name)s - %(levelname)s - %(message)s")
        self.cmdconsole.setFormatter(self.formatter)
        self.regularlog.addHandler(self.cmdconsole)

        self.tushare_dir = "C:\\quanttime\\data\\dividend\\tushare\\"

        self.errorCodeList = []

        # jqdata context 暂时不用先注释
        # auth('13811866763', "sam155")

        # mongodb client
        self.mongo_client = pymongo.MongoClient('mongodb://localhost:27017/')

        # tushare connect context
        token = "17e7755e254f02cc312b8b7e22ded9a308924147f8546fdfbe653ba1"
        ts.set_token(token)
        self.cons = ts.get_apis()
        # ts 授权
        self.pro = ts.pro_api()
Example #29
0
    def getTickData(self):
        """
        通过tushare获取分时数据,并存入数据库,避免后面运行重复获取。
        """
        df = None
        db = self.connectDb()

        flt = {'date': self.date}
        result = db[self.collectionName].find_one(flt)
        if not result:
            print(u'数据库无数据,正在尝试从tushare获取数据..')
            cons = ts.get_apis()
            df = ts.tick(self.symbol, conn=cons, date=self.date)
            if df is not None:
                df['date'] = self.date
                db[self.collectionName].insert_many(df.to_dict('records'))
                print(u'成功获取并写入数据库。')
            else:
                print(u'获取数据出错,可能接口问题,或者日期设置不正确。')
        else:
            print(u'数据库有匹配数据')
            data = list(db[self.collectionName].find(flt, projection={'_id': False}))
            df = pd.DataFrame(data)

        if df is not None:
            df.drop_duplicates('datetime', keep='last', inplace=True)
            df.reset_index(inplace=True, drop=True)
            df.datetime = df.datetime.map(lambda dateStr: dateStr[-5:])
            self.tickData = df
            return df
Example #30
0
def collect_index_china_full():
    conn = ts.get_apis()
    collect_single_index_from_ts('000001', conn=conn)
    collect_single_index_from_ts('399001', conn=conn)
    collect_single_index_from_ts('000300', conn=conn)
    collect_single_index_from_ts('000905', conn=conn)
    ts.close_apis(conn)
Example #31
0
def fetch(code_list):
    tsconn = ts.get_apis()
    sqlconn = db.connect()
    cursor = sqlconn.cursor()

    try:
        for code in code_list:
            try:
                data = ts.bar(code,
                              conn=tsconn,
                              start_date="1970-01-01",
                              freq="5min")

                count = data.shape[0]
                i = 0

                for index, row in data.iterrows():
                    cursor.execute(
                        "insert into stock_price (code, time, price) values (%s, %s, %s)",
                        (code, str(index), float(row["close"])))
                    i += 1
                    if i % 1000 == 0:
                        print("{0} {1}%".format(code, int(i / count * 100)))

                sqlconn.commit()
                print("done")

            except IOError as err:

                print(code)
                print(err)

    finally:
        sqlconn.close()
        ts.close_apis(tsconn)
Example #32
0
 def __init__(self):
     self.cb_code, self.name, self.yjl = self.bond()
     self.stocks = dict(zip(self.cb_code, self.name))
     self.stocks_yjl = dict(zip(self.cb_code, self.yjl))
     self.api = ts.get_apis()
     # python3 这个返回的不是list,需要手工转换
     self.code_list = list(self.stocks.keys())
Example #33
0
def monitor():
    engine = get_engine('db_zdt')
    table = '20180409zdt'
    api = ts.get_apis()
    df = pd.read_sql(table, engine, index_col='index')
    # print df
    price_list = []
    percent_list = []
    amplitude_list = []
    start = datetime.datetime.now()
    for i in df[u'代码'].values:
        try:
            curr = ts.quotes(i, conn=api)
            last_close = curr['last_close'].values[0]
            curr_price = curr['price'].values[0]
            amplitude = round(
                ((curr['high'].values[0] - curr['low'].values[0]) * 1.00 /
                 last_close) * 100, 2)
            # if last_close>=curr_price:
            # print i,
            # print df[df[u'代码']==i][u'名称'].values[0],
            # print  percent
        except Exception, e:
            print e
            curr_price = 0
        if last_close == 0:
            percent = np.nan
        percent = round((curr_price - last_close) * 100.00 / last_close, 2)
        percent_list.append(percent)
        price_list.append(curr_price)
        amplitude_list.append(amplitude)
Example #34
0
def fetch_kdata_lazy(code, asset, freq, end_date=''):
    # global在第一行声明,养成好习惯
    global cons
    start_date = get_date_max(code, asset, freq) + relativedelta(minutes=1)
    if isinstance(end_date, datetime.datetime):
        end_date_str = end_date.strftime(DT_FMT).replace(
            "11:30:00", "13:00:00")
        end_date = datetime.datetime.strptime(end_date_str, DT_FMT)
    kdata = ts.bar(code,
                   conn=cons,
                   asset=asset,
                   adj='qfq',
                   freq=freq,
                   start_date=start_date,
                   end_date=end_date)
    result = 0
    try:
        result = insert_kdata(asset, freq, kdata)
    except pymongo.errors.BulkWriteError as err:
        logger.error(err)
    except StockError as err:
        logger.error(err)
    except TypeError as e:
        cons = ts.get_apis()
        logger.error(e)
    except Exception as e:
        logger.error(e)
    return result
def store_data():
    code = '600050'
    conn = ts.get_apis()
    file_name = os.path.join(data_path, code + '.xls')
    df = ts.bar(code, conn=conn, start_date='2015-01-01')
    # print(df.head(10))
    print(file_name)
    df.to_excel(file_name)
Example #36
0
def monitor():
    engine = get_engine('db_zdt')
    table = '20180409zdt'
    api = ts.get_apis()
    df = pd.read_sql(table, engine, index_col='index')
    price_list = []
    percent_list = []
    amplitude_list = []
    start = datetime.datetime.now()
    for i in df['代码'].values:
        try:
            curr = ts.quotes(i, conn=api)
            last_close = curr['last_close'].values[0]
            curr_price = curr['price'].values[0]
            amplitude = round(((curr['high'].values[0] - curr['low'].values[0]) * 1.00 / last_close) * 100, 2)
            # if last_close>=curr_price:
            # print(i,)
            # print(df[df['代码']==i]['名称'].values[0],)
            # print( percent)
        except Exception as e:
            print('this point')
            print(e)
            api=ts.get_apis()
            curr_price = 0

        if last_close == 0:
            percent = np.nan
        percent = round((curr_price - last_close) * 100.00 / last_close, 2)
        percent_list.append(percent)
        price_list.append(curr_price)
        amplitude_list.append(amplitude)

    df['今日价格'] = price_list
    df['今日涨幅'] = percent_list
    df['今日振幅'] = amplitude_list
    df['更新时间'] = datetime.datetime.now().strftime('%Y %m %d %H:%M%S')

    end = datetime.datetime.now()
    print('time use {}'.format(end - start))

    df.to_sql(table + 'monitor', engine, if_exists='replace')
    ts.close_apis(api)
Example #37
0
    def __init__(self):
        self.engine = get_engine('db_stock')

        self.kzz_code, self.kzz_name, self.zg_code, self.name, self.yjl = self.zg_bond()

        self.kzz_stocks = dict(zip(self.kzz_code, self.kzz_name))
        self.zg_stocks = dict(zip(self.zg_code, self.name))

        self.kzz_stocks_yjl = dict(zip(self.kzz_code, self.yjl))
        self.zg_stocks_yjl = dict(zip(self.zg_code, self.yjl))

        self.api = ts.get_apis()
Example #38
0
    def get_price_diff(self, codes, has_sent_, types):
        # 针对可转债
        try:
            df = ts.quotes(codes, conn=self.api)

        except Exception as  e:
            logger.error('获取可转债异常 >>>> {}'.format(e))
            try:
                self.api = ts.get_apis()
            except Exception as e:
                logger.error('异常中存在异常{}'.format(e))

            time.sleep(EXECEPTION_TIME)

        else:
            df['bid1'] = df['bid1'].astype(float)
            df['ask1'] = df['ask1'].astype(float)
            df['diff'] = np.abs(df['bid1'] - df['ask1'])
            result = df[df['diff'] >= DIFF_V]
            if result.empty:
                # continue
                return
            else:
                for j in result['code']:

                    if has_sent_[j] <= datetime.datetime.now():
                        has_sent_[j] = datetime.datetime.now()+ datetime.timedelta(minutes=DIFF_DELTA_TIME)
                        name_list = []
                        yjl_list = []
                        name_list.append(self.kzz_stocks[j])
                        yjl_list.append(self.kzz_stocks_yjl[j])
                        ret_dt1 = result[result['code'] == j]
                        ret_dt1['名称']=name_list
                        ret_dt1['溢价率']=yjl_list
                        # ret_dt1 = ret_dt1.set_index('code', drop=True)

                        code=j
                        name = ret_dt1['名称'].values[0]
                        price = ret_dt1['price'].values[0]
                        bid = ret_dt1['bid1'].values[0]
                        ask = ret_dt1['ask1'].values[0]
                        diff = round(ret_dt1['diff'].values[0],2)
                        now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
                        content0 = '{t}\n{code}::{name}:价格:{price} 买1:{bid} 卖1:{ask}差价:{diff}'.format(code=code,name=name, price=price,
                                                                                              bid=bid, ask=ask,
                                                                                              diff=diff, t=now)
                        logger.info(content0)
                        try:
                            wechat.send_content(content0)
                        except Exception as e:
                            logger.info('发送微信失败')
                            logger.info(e)
Example #39
0
def stock_line():
    api = ts.get_apis()
    df = ts.bar('300141', conn=api, start_date='2018-01-01')
    # print(df)
    del df['code']
    df.reset_index(inplace=True)
    print(df)
    df['datetime'] = df['datetime'].map(mdates.date2num)
    ax1 = plt.subplot2grid((6, 1), (0, 0), rowspan=5)
    ax2 = plt.subplot2grid((6, 1), (5, 0), rowspan=5, sharex=ax1)
    ax1.xaxis_date()
    candlestick_ochl(ax1, df.values, width=1, colorup='r', colordown='g')
    # ax2.fill_between(ax1,df['vol'].values,0)
    plt.show()
    ts.close_apis(api)
def ban_share(code,name):
    conn =ts.get_apis()
    year_2017 = [2629.218,3970.902,2083.032,1720.327,1999.456,1771.074,2417.082,2904.992,2910.946,2971.483,2350.122,3874.328]
    df = ts.bar(code, conn=conn, freq='M', start_date='2016-12-30', end_date='2017-11-01', asset='INDEX')
    series = df['close']
    '''
    diff_series=[]
    print series
    l = len(series)
    for i in range(l-1):
        print series[i]
        d= series[i]-series[i+1]
        diff_series.append(d)
    #print len(diff_series)
    '''

    #s2=Series(series)
    s2=series[:len(series)-1]
    s3 = s2.sort_index(ascending=True)
    #print s3
    s1 = Series(year_2017[0:len(s3)])
    s3=s3.reset_index(drop=True)
    #print s3
    #print s1
    cor = s3.corr(s1)
    #print len(s3)
    #print len(s1)
    print cor
    plt.figure()
    plt.subplot(2,1,1)
    s1.plot()
    plt.subplot(2,1,2)
    s3.plot(title=name)
    plt.show()

    if abs(cor) >0.5:
        print 'Great factor: ',code
Example #41
0
def api_close_case():
    api = ts.get_apis()
    print('exit function')
    ts.close_apis(api)
    exit(0)
Example #42
0
from matplotlib import rcParams
import tushare as ts
import matplotlib
import os
import talib
import matplotlib.dates as mdates
from matplotlib.finance import candlestick2_ochl,volume_overlay
# from mpl_finance import candlestick_ochl
# from mpl_finance import candlestick2_ochl
matplotlib.style.use('ggplot')

data_path = os.path.join(os.getcwd(), 'data')
if not os.path.exists(data_path):
    os.mkdir(data_path)
os.chdir(data_path)
api = ts.get_apis()


def plot_test1():
    x = [1, 2]
    y = [2, 4]
    # plt.scatter(x,y)

    plt.scatter(x, y, color='red', marker='x')
    plt.axis([0, 10, 0, 10])
    plt.show()


def from_book():
    fig = plt.figure()
    ax1 = fig.add_subplot(2, 2, 1)
Example #43
0
# -*-coding=utf-8-*-
# 获取 不同形态的k线
import random
import time
import tushare as ts
import pandas as pd
import os, datetime, math
import numpy as np
import logging
from setting import get_engine, MYSQL_HOST, MYSQL_PORT, MYSQL_USER, MYSQL_PASSWORD, REDIS_HOST, get_mysql_conn
import redis
from threading import Thread
import MySQLdb
from collect_data import SaveData
engine = get_engine('history')
conn = ts.get_apis()
MYSQL_DB = 'history'
cursor = get_mysql_conn(MYSQL_DB).cursor()


# pd.set_option('display.max_rows', None)

class Kline():
    def __init__(self):
        logging.info('tushare version: {}'.format(ts.__version__))
        path = os.path.join(os.getcwd(), 'data')
        self.today_date = datetime.datetime.now().strftime('%Y-%m-%d')
        logging.info(self.today_date)
        if not os.path.exists(path):
            os.mkdir(path)
        os.chdir(path)
Example #44
0
def plot_stock_line(api,code, name, table_name, current, start='2017-10-01', save=False):
    title = '{} {} {} {}'.format(current, code, name, table_name)
    title = title.replace('*', '_')


    if os.path.exists(title + '.png'):
        return



    if code is None and name is not None:
        code = base_info[base_info['name'] == name]['code'].values[0]

    df = None
    for _ in range(4):

        try:
            df = ts.bar(code, conn=api, start_date=start)

        except Exception as e:
            logger.info(e)
            ts.close_apis(api)
            time.sleep(random.random() * 30)
            api = ts.get_apis()

        else:
            break

    if df is None:
        return

    df = df.sort_index()

    if name is None:
        name = base_info[base_info['code'] == code]['name'].values[0]

    df = df.reset_index()
    df['datetime'] = df['datetime'].dt.strftime('%Y-%m-%d')
    sma5 = talib.SMA(df['close'].values, 5)
    sma20 = talib.SMA(df['close'].values, 10)
    # ax.set_xticks(range(0,len(df),20))
    # # ax.set_xticklabels(df['date'][::5])
    # ax.set_xticklabels(df['datetime'][::20])
    fig = plt.figure(figsize=(10, 8))
    # fig,(ax,ax2)=plt.subplots(2,1,sharex=True,figsize=(16,10))
    ax = fig.add_axes([0, 0.3, 1, 0.50])
    ax2 = fig.add_axes([0, 0.1, 1, 0.20])

    candlestick2_ochl(ax, df['open'], df['close'], df['high'], df['low'], width=1, colorup='r', colordown='g',
                      alpha=0.6)
    ax.grid(True)
    ax.set_title(title)
    ax.plot(sma5, label='MA5')
    ax.legend()
    ax.plot(sma20, label='MA20')
    ax.legend(loc=2)
    ax.grid(True)
    # df['vol'].plot(kind='bar')
    volume_overlay(ax2, df['open'], df['close'], df['vol'], width=1, alpha=0.8, colordown='g', colorup='r')
    ax2.set_xticks(range(0, len(df), 5))
    # ax.set_xticklabels(df['date'][::5])
    ax2.set_xticklabels(df['datetime'][::5])
    plt.setp(ax2.get_xticklabels(), rotation=30, horizontalalignment='right')
    ax2.grid(True)
    plt.subplots_adjust(hspace=0.3)

    if save:
        # path = os.path.join(os.path.dirname(__file__),'data',today)
        fig.savefig(title + '.png')
    else:
        plt.show()

    plt.close()
Example #45
0
import tushare as ts

#中证500
#dt = ts.get_zz500s()
#print(dt);

#上证50
#print(ts.get_sz50s());

#沪深300
#print(ts.get_hs300s());


#获取连接备用

cons = ts.get_apis()
df = ts.bar('000300', conn=cons, asset='INDEX', start_date='', end_date='')
df = df.reset_index();
df['value'] = df['open']/2000;
print(df.head(5));
print(df.dtypes);

df1 = ts.bar('000016', conn=cons, asset='INDEX', start_date='', end_date='')
df1 = df1.reset_index();
df1['value'] = df1['open']/2000;
df1['odc'] = df1['open']>df1['close'];

df = pd.concat([df,df1]);
'''
df1 = ts.bar('000905', conn=cons, asset='INDEX', start_date='2016-01-01', end_date='')
df1 = df1.reset_index();
Example #46
0
 def __init__(self):
     self.cons = ts.get_apis()
     self.engine = create_engine('mysql+pymysql://root:password@localhost:3306/stock?charset=utf8')
     self.all_info = ts.get_stock_basics()
     self.all_codes = self.all_info.index
Example #47
0

from src.models.Company import Trend, Fundamental
from src.const import BF


file_path = "%s%s%s" % (BASE_DIR, BF['dir']['uploads_dir'], BF['filename']['fundamental'])

if not os.path.exists(file_path):
    fun_df = Fundamental.set_frame(file_path)
else:
    fun_df = pandas.read_csv(file_path, encoding='gbk')
    fun_df.code = fun_df.code.apply(lambda x: str(x).rjust(6, '0'))


con = tushare.get_apis()
code_list = ['600703', '300545', '000014', '300696', '300116', '300094', '002340', '000861',
             '601901', '601200', '600079']

for _code in code_list:
    _fun_df = fun_df.loc[fun_df['code'] == _code].reset_index(drop=True)
    if _fun_df.index.size == 0:
        print(_code)
        continue
    name = _fun_df.at[0, 'name']
    name = "%s%s%s" % (BASE_DIR,  BF['dir']['company_dir'], name)
    Trend.set_frame(con, _code, name)

com_df = pandas.DataFrame(Trend.company_list)
com_df.to_csv("company.csv", index=False)