Example #1
0
    def launch(self, view_model):
        # type: (FCDAdapterModel) -> [FcdIndex, ConnectivityMeasureIndex]
        """
        Launch algorithm and build results.
        :param view_model: the ViewModel keeping the algorithm inputs
        :return: the fcd index for the computed fcd matrix on the given time-series, with that sw and that sp
        """
        with h5.h5_file_for_index(self.input_time_series_index) as ts_h5:
            [fcd, fcd_segmented, eigvect_dict,
             eigval_dict] = self._compute_fcd_matrix(ts_h5)
            connectivity_gid = ts_h5.connectivity.load()
            connectivity = self.load_traited_by_gid(connectivity_gid)

        result = [
        ]  # list to store: fcd index, fcd_segmented index (eventually), and connectivity measure indexes

        # Create an index for the computed fcd.
        fcd_index = FcdIndex()
        fcd_h5_path = h5.path_for(self.storage_path, FcdH5, fcd_index.gid)
        with FcdH5(fcd_h5_path) as fcd_h5:
            self._populate_fcd_h5(fcd_h5, fcd, fcd_index.gid,
                                  self.input_time_series_index.gid,
                                  view_model.sw, view_model.sp)
            self._populate_fcd_index(fcd_index,
                                     self.input_time_series_index.gid, fcd_h5)
        result.append(fcd_index)

        if np.amax(fcd_segmented) == 1.1:
            result_fcd_segmented_index = FcdIndex()
            result_fcd_segmented_h5_path = h5.path_for(
                self.storage_path, FcdH5, result_fcd_segmented_index.gid)
            with FcdH5(
                    result_fcd_segmented_h5_path) as result_fcd_segmented_h5:
                self._populate_fcd_h5(result_fcd_segmented_h5, fcd_segmented,
                                      result_fcd_segmented_index.gid,
                                      self.input_time_series_index.gid,
                                      view_model.sw, view_model.sp)
                self._populate_fcd_index(result_fcd_segmented_index,
                                         self.input_time_series_index.gid,
                                         result_fcd_segmented_h5)
            result.append(result_fcd_segmented_index)

        for mode in eigvect_dict.keys():
            for var in eigvect_dict[mode].keys():
                for ep in eigvect_dict[mode][var].keys():
                    for eig in range(3):
                        cm_data = eigvect_dict[mode][var][ep][eig]
                        measure = ConnectivityMeasure()
                        measure.connectivity = connectivity
                        measure.array_data = cm_data
                        measure.title = "Epoch # %d, eigenvalue = %s, variable = %s, " \
                                        "mode = %s." % (ep, eigval_dict[mode][var][ep][eig], var, mode)
                        cm_index = h5.store_complete(measure,
                                                     self.storage_path)
                        result.append(cm_index)
        return result
Example #2
0
    def launch(self, view_model):
        # type: (FCDAdapterModel) -> [FcdIndex]
        """
        Launch algorithm and build results.

        :param time_series: the input time-series index for which fcd matrix should be computed
        :param sw: length of the sliding window
        :param sp: spanning time: distance between two consecutive sliding window
        :returns: the fcd index for the computed fcd matrix on the given time-series, with that sw and that sp
        :rtype: `FcdIndex`,`ConnectivityMeasureIndex`
        """
        with h5.h5_file_for_index(self.input_time_series_index) as ts_h5:
            [fcd, fcd_segmented, eigvect_dict,
             eigval_dict] = self._compute_fcd_matrix(ts_h5)
            connectivity_gid = ts_h5.connectivity.load()

        result = [
        ]  # list to store: fcd index, fcd_segmented index (eventually), and connectivity measure indexes

        # Create an index for the computed fcd.
        fcd_index = FcdIndex()
        fcd_h5_path = h5.path_for(self.storage_path, FcdH5, fcd_index.gid)
        with FcdH5(fcd_h5_path) as fcd_h5:
            fcd_array_metadata = self._populate_fcd_h5(
                fcd_h5, fcd, fcd_index.gid, self.input_time_series_index.gid,
                view_model.sw, view_model.sp)
        self._populate_fcd_index(fcd_index, self.input_time_series_index.gid,
                                 fcd, fcd_array_metadata)
        result.append(fcd_index)

        if np.amax(fcd_segmented) == 1.1:
            result_fcd_segmented_index = FcdIndex()
            result_fcd_segmented_h5_path = h5.path_for(
                self.storage_path, FcdH5, result_fcd_segmented_index.gid)
            with FcdH5(
                    result_fcd_segmented_h5_path) as result_fcd_segmented_h5:
                fcd_segmented_metadata = self._populate_fcd_h5(
                    result_fcd_segmented_h5, fcd_segmented,
                    result_fcd_segmented_index.gid,
                    self.input_time_series_index.gid, view_model.sw,
                    view_model.sp)
            self._populate_fcd_index(result_fcd_segmented_index,
                                     self.input_time_series_index.id,
                                     fcd_segmented, fcd_segmented_metadata)
            result.append(result_fcd_segmented_index)

        for mode in eigvect_dict.keys():
            for var in eigvect_dict[mode].keys():
                for ep in eigvect_dict[mode][var].keys():
                    for eig in range(3):
                        cm_data = eigvect_dict[mode][var][ep][eig]
                        cm_index = ConnectivityMeasureIndex()
                        cm_index.type = ConnectivityMeasure.__name__
                        cm_index.fk_connectivity_gid = connectivity_gid.hex
                        cm_index.title = "Epoch # %d, \n eigenvalue = %s,\n variable = %s,\n " \
                                         "mode = %s." % (ep, eigval_dict[mode][var][ep][eig], var, mode)

                        storage_path = h5.path_for(self.storage_path,
                                                   ConnectivityMeasureH5,
                                                   cm_index.gid)
                        with ConnectivityMeasureH5(storage_path) as f:
                            f.array_data.store(cm_data)
                            f.connectivity.store(connectivity_gid)
                            f.title.store(cm_index.title)
                            cm_array_metadata = f.array_data.get_cached_metadata(
                            )

                        cm_index.array_data_min = cm_array_metadata.min
                        cm_index.array_data_max = cm_array_metadata.max
                        cm_index.array_data_mean = cm_array_metadata.mean
                        result.append(cm_index)
        return result