def get_input_tree(self): """ Take as Input a Connectivity Object. """ filters_ui = [UIFilter(linked_elem_name="colors", linked_elem_field=FilterChain.datatype + "._connectivity"), UIFilter(linked_elem_name="rays", linked_elem_field=FilterChain.datatype + "._connectivity")] json_ui_filter = json.dumps([ui_filter.to_dict() for ui_filter in filters_ui]) return [{'name': 'input_data', 'label': 'Connectivity Matrix', 'type': Connectivity, 'required': True, KWARG_FILTERS_UI: json_ui_filter}, {'name': 'surface_data', 'label': 'Brain Surface', 'type': CorticalSurface, 'description': 'The Brain Surface is used to give you an idea of the connectivity position relative ' 'to the full brain cortical surface. This surface will be displayed as a shadow ' '(only used in 3D Edges tab).'}, {'name': 'colors', 'label': 'Node Colors', 'type': ConnectivityMeasure, 'conditions': FilterChain(fields=[FilterChain.datatype + '._nr_dimensions'], operations=["=="], values=[1]), 'description': 'A ConnectivityMeasure DataType that establishes a colormap for the nodes ' 'displayed in the 2D Connectivity tabs.'}, {'name': 'step', 'label': 'Color Threshold', 'type': 'float', 'description': 'All nodes with a value greater or equal (>=) than this threshold will be displayed ' 'as red discs, otherwise (<) they will be yellow. (This applies to 2D Connectivity ' 'tabs and the threshold will depend on the metric used to set the Node Color)'}, {'name': 'rays', 'label': 'Shapes Dimensions', 'type': ConnectivityMeasure, 'conditions': FilterChain(fields=[FilterChain.datatype + '._nr_dimensions'], operations=["=="], values=[1]), 'description': 'A ConnectivityMeasure datatype used to establish the size of the spheres representing ' 'each node. (It only applies to 3D Nodes tab).'}]
def get_input_tree(self): # todo: filter connectivity measures: same length as regions and 1-dimensional filters_ui = [ UIFilter(linked_elem_name="region_map", linked_elem_field=FilterChain.datatype + "._surface"), # UIFilter(linked_elem_name="connectivity_measure", # linked_elem_field=FilterChain.datatype + "._surface") ] json_ui_filter = json.dumps( [ui_filter.to_dict() for ui_filter in filters_ui]) return [{ 'name': 'surface', 'label': 'Brain surface', 'type': Surface, 'required': True, 'description': '', KWARG_FILTERS_UI: json_ui_filter }, { 'name': 'region_map', 'label': 'Region mapping', 'type': RegionMapping, 'required': False, 'description': 'A region map' }, { 'name': 'connectivity_measure', 'label': 'Connectivity measure', 'type': ConnectivityMeasure, 'required': False, 'description': 'A connectivity measure', 'conditions': FilterChain(fields=[FilterChain.datatype + '._nr_dimensions'], operations=["=="], values=[1]) }, { 'name': 'shell_surface', 'label': 'Shell Surface', 'type': Surface, 'required': False, 'description': "Face surface to be displayed semi-transparently, for orientation only." }]
def get_input_tree(self): """ Take as Input a Connectivity Object. """ filters_ui = [UIFilter(linked_elem_name="annotations", linked_elem_field=FilterChain.datatype + "._connectivity"), UIFilter(linked_elem_name="region_map", linked_elem_field=FilterChain.datatype + "._connectivity"), UIFilter(linked_elem_name="connectivity_measure", linked_elem_field=FilterChain.datatype + "._connectivity")] json_ui_filter = json.dumps([ui_filter.to_dict() for ui_filter in filters_ui]) return [{'name': 'connectivity', 'label': 'Connectivity Matrix', 'type': Connectivity, 'required': False, KWARG_FILTERS_UI: json_ui_filter}, # Used for filtering {'name': 'annotations', 'label': 'Ontology Annotations', 'type': ConnectivityAnnotations, 'required': True}, {'name': 'region_map', 'label': 'Region mapping', 'type': RegionMapping, 'required': False, 'description': 'A region map to identify us the Cortical Surface to display ans well as ' 'how the mapping from Connectivity to Cortex is done '}]
class Simulator(core.Type): """ The Simulator class coordinates classes from all other modules in the simulator package in order to perform simulations. In general, it is necessary to initialiaze a simulator with the desired components and then call the simulator in a loop to obtain simulation data: >>> sim = Simulator(...) >>> for output in sim(simulation_length=1000): ... Please refer to the user guide and the demos for more detail. .. #Currently there seems to be a clash betwen traits and autodoc, autodoc .. #can't find the methods of the class, the class specific names below get .. #us around this... .. automethod:: Simulator.__init__ .. automethod:: Simulator.configure .. automethod:: Simulator.__call__ .. automethod:: Simulator.configure_history .. automethod:: Simulator.configure_integrator_noise .. automethod:: Simulator.memory_requirement .. automethod:: Simulator.runtime .. automethod:: Simulator.storage_requirement """ connectivity = connectivity_dtype.Connectivity( label="Long-range connectivity", default=None, order=1, required=True, filters_ui=[ UIFilter(linked_elem_name="projection_matrix_data", linked_elem_field=FilterChain.datatype + "._sources", linked_elem_parent_name="monitors", linked_elem_parent_option="EEG"), UIFilter(linked_elem_name="region_mapping_data", linked_elem_field=FilterChain.datatype + "._connectivity", linked_elem_parent_name="surface", linked_elem_parent_option=None) ], doc="""A tvb.datatypes.Connectivity object which contains the structural long-range connectivity data (i.e., white-matter tracts). In combination with the ``Long-range coupling function`` it defines the inter-regional connections. These couplings undergo a time delay via signal propagation with a propagation speed of ``Conduction Speed``""") conduction_speed = basic.Float( label="Conduction Speed", default=3.0, order=2, required=False, range=basic.Range(lo=0.01, hi=100.0, step=1.0), doc="""Conduction speed for ``Long-range connectivity`` (mm/ms)""") coupling = coupling_module.Coupling( label="Long-range coupling function", default=coupling_module.Linear(), required=True, order=2, doc="""The coupling function is applied to the activity propagated between regions by the ``Long-range connectivity`` before it enters the local dynamic equations of the Model. Its primary purpose is to 'rescale' the incoming activity to a level appropriate to Model.""") surface = Cortex( label="Cortical surface", default=None, order=3, required=False, filters_backend=FilterChain( fields=[FilterChain.datatype + '._valid_for_simulations'], operations=["=="], values=[True]), filters_ui=[ UIFilter(linked_elem_name="projection_matrix_data", linked_elem_field=FilterChain.datatype + "._sources", linked_elem_parent_name="monitors", linked_elem_parent_option="EEG"), UIFilter(linked_elem_name="local_connectivity", linked_elem_field=FilterChain.datatype + "._surface", linked_elem_parent_name="surface", linked_elem_parent_option=None) ], doc="""By default, a tvb.datatypes.Cortex object which represents the cortical surface defined by points in the 3D physical space and their neighborhood relationship. In the current TVB version, when setting up a surface-based simulation, the option to configure the spatial spread of the ``Local Connectivity`` is available.""") stimulus = patterns_dtype.SpatioTemporalPattern( label="Spatiotemporal stimulus", default=None, order=4, required=False, doc= """A ``Spatiotemporal stimulus`` can be defined at the region or surface level. It's composed of spatial and temporal components. For region defined stimuli the spatial component is just the strength with which the temporal component is applied to each region. For surface defined stimuli, a (spatial) function, with finite-support, is used to define the strength of the stimuli on the surface centred around one or more focal points. In the current version of TVB, stimuli are applied to the first state variable of the ``Local dynamic model``.""") model = models_module.Model( label="Local dynamic model", default=models_module.Generic2dOscillator, required=True, order=5, doc="""A tvb.simulator.Model object which describe the local dynamic equations, their parameters, and, to some extent, where connectivity (local and long-range) enters and which state-variables the Monitors monitor. By default the 'Generic2dOscillator' model is used. Read the Scientific documentation to learn more about this model.""") integrator = integrators_module.Integrator( label="Integration scheme", default=integrators_module.HeunDeterministic, required=True, order=6, doc="""A tvb.simulator.Integrator object which is an integration scheme with supporting attributes such as integration step size and noise specification for stochastic methods. It is used to compute the time courses of the model state variables.""") initial_conditions = arrays_dtype.FloatArray( label="Initial Conditions", default=None, order=-1, required=False, doc="""Initial conditions from which the simulation will begin. By default, random initial conditions are provided. Needs to be the same shape as simulator 'history', ie, initial history function which defines the minimal initial state of the network with time delays before time t=0. If the number of time points in the provided array is insufficient the array will be padded with random values based on the 'state_variables_range' attribute.""") monitors = monitors_module.Monitor( label="Monitor(s)", default=monitors_module.TemporalAverage, required=True, order=8, select_multiple=True, doc="""A tvb.simulator.Monitor or a list of tvb.simulator.Monitor objects that 'know' how to record relevant data from the simulation. Two main types exist: 1) simple, spatial and temporal, reductions (subsets or averages); 2) physiological measurements, such as EEG, MEG and fMRI. By default the Model's specified variables_of_interest are returned, temporally downsampled from the raw integration rate to a sample rate of 1024Hz.""") simulation_length = basic.Float( label="Simulation Length (ms)", default=1000.0, # ie 1 second required=True, order=9, doc="""The length of a simulation in milliseconds (ms).""") def __init__(self, **kwargs): """ Use the base class' mechanisms to initialise the traited attributes declared above, overriding defaults with any provided keywords. Then declare any non-traited attributes. """ super(Simulator, self).__init__(**kwargs) LOG.debug(str(kwargs)) self.calls = 0 self.current_step = 0 self.number_of_nodes = None self.horizon = None self.good_history_shape = None self.history = None self._memory_requirement_guess = None self._memory_requirement_census = None self._storage_requirement = None self._runtime = None def __str__(self): return "Simulator(**kwargs)" def preconfigure(self): """ Configure just the basic fields, so that memory can be estimated """ self.connectivity.configure() if self.surface: self.surface.configure() if self.stimulus: self.stimulus.configure() self.coupling.configure() self.model.configure() self.integrator.configure() # monitors needs to be a list or tuple, even if there is only one... if not isinstance(self.monitors, (list, tuple)): self.monitors = [self.monitors] # Configure monitors for monitor in self.monitors: monitor.configure() ##------------- Now the the interdependant configuration -------------## #"Nodes" refers to either regions or vertices + non-cortical regions. if self.surface is None: self.number_of_nodes = self.connectivity.number_of_regions else: #try: self.number_of_nodes = self.surface.region_mapping.shape[0] #except AttributeError: # msg = "%s: Surface needs region mapping defined... " # LOG.error(msg % (repr(self))) # Estimate of memory usage self._guesstimate_memory_requirement() def configure(self, full_configure=True): """ The first step of configuration is to run the configure methods of all the Simulator's components, ie its traited attributes. Configuration of a Simulator primarily consists of calculating the attributes, etc, which depend on the combinations of the Simulator's traited attributes (keyword args). Converts delays from physical time units into integration steps and updates attributes that depend on combinations of the 6 inputs. """ if full_configure: # When run from GUI, preconfigure is run separately, and we want to avoid running that part twice self.preconfigure() #Make sure spatialised model parameters have the right shape (number_of_nodes, 1) excluded_params = ("state_variable_range", "variables_of_interest", "noise", "psi_table", "nerf_table") for param in self.model.trait.keys(): if param in excluded_params: continue #If it's a surface sim and model parameters were provided at the region level region_parameters = getattr(self.model, param) if self.surface is not None: if region_parameters.size == self.connectivity.number_of_regions: new_parameters = region_parameters[ self.surface.region_mapping].reshape((-1, 1)) setattr(self.model, param, new_parameters) region_parameters = getattr(self.model, param) if region_parameters.size == self.number_of_nodes: new_parameters = region_parameters.reshape((-1, 1)) setattr(self.model, param, new_parameters) #Configure spatial component of any stimuli self.configure_stimuli() #Set delays, provided in physical units, in integration steps. self.connectivity.set_idelays(self.integrator.dt) self.horizon = numpy.max(self.connectivity.idelays) + 1 LOG.info("horizon is %d steps" % self.horizon) # workspace -- minimal state of network with delays self.good_history_shape = (self.horizon, self.model.nvar, self.number_of_nodes, self.model.number_of_modes) msg = "%s: History shape will be: %s" LOG.debug(msg % (repr(self), str(self.good_history_shape))) #Reshape integrator.noise.nsig, if necessary. if isinstance(self.integrator, integrators_module.IntegratorStochastic): self.configure_integrator_noise() self.configure_history(self.initial_conditions) #Configure Monitors to work with selected Model, etc... self.configure_monitors() #Estimate of memory usage. self._census_memory_requirement() def __call__(self, simulation_length=None, random_state=None): """ When a Simulator is called it returns an iterator. kwargs: ``simulation_length``: total time of simulation ``random_state``: a state for the NumPy random number generator, saved from a previous call to permit consistent continuation of a simulation. """ #The number of times this Simulator has been called. self.calls += 1 #Update the simulator objects simulation_length attribute, if simulation_length is None: simulation_length = self.simulation_length else: self.simulation_length = simulation_length #Estimate run time and storage requirements, with logging. self._guesstimate_runtime() self._calculate_storage_requirement() if random_state is not None: if isinstance(self.integrator, integrators_module.IntegratorStochastic): self.integrator.noise.random_stream.set_state(random_state) msg = "%s: random_state supplied. Seed is: %s" LOG.info( msg % (str(self), str(self.integrator.noise.random_stream.get_state()[1][0]) )) else: msg = "%s: random_state supplied for non-stochastic integration" LOG.warn(msg % str(self)) #Determine the number of integration steps required to produce #data of simulation_length int_steps = int(simulation_length / self.integrator.dt) LOG.info("%s: gonna do %d integration steps" % (str(self), int_steps)) # locals for cleaner code. horizon = self.horizon history = self.history dfun = self.model.dfun coupling = self.coupling scheme = self.integrator.scheme npsum = numpy.sum npdot = numpy.dot ncvar = len(self.model.cvar) number_of_regions = self.connectivity.number_of_regions nsn = (number_of_regions, 1, number_of_regions) # Exact dtypes and alignment are required by c speedups. Once we have history objects these will be encapsulated # cvar index array broadcastable to nodes, cvars, nodes cvar = numpy.array(self.model.cvar[numpy.newaxis, :, numpy.newaxis], dtype=numpy.intc) LOG.debug("%s: cvar is: %s" % (str(self), str(cvar))) # idelays array broadcastable to nodes, cvars, nodes idelays = numpy.array(self.connectivity.idelays[:, numpy.newaxis, :], dtype=numpy.intc, order='c') LOG.debug("%s: idelays shape is: %s" % (str(self), str(idelays.shape))) # weights array broadcastable to nodes, cva, nodes, modes weights = self.connectivity.weights[:, numpy.newaxis, :, numpy.newaxis] LOG.debug("%s: weights shape is: %s" % (str(self), str(weights.shape))) # node_ids broadcastable to nodes, cvars, nodes node_ids = numpy.array( numpy.arange(number_of_regions)[numpy.newaxis, numpy.newaxis, :], dtype=numpy.intc) LOG.debug("%s: node_ids shape is: %s" % (str(self), str(node_ids.shape))) if self.surface is None: local_coupling = 0.0 else: region_average = self.surface.region_average region_history = npdot( region_average, history ) # this may be very expensive ~60sec for epileptor (many states and modes ...) region_history = region_history.transpose((1, 2, 0, 3)) region_history = numpy.ascontiguousarray( region_history) # required by the c speedups if self.surface.coupling_strength.size == 1: local_coupling = (self.surface.coupling_strength[0] * self.surface.local_connectivity.matrix) elif self.surface.coupling_strength.size == self.surface.number_of_vertices: ind = numpy.arange(self.number_of_nodes, dtype=int) vec_cs = numpy.zeros((self.number_of_nodes, )) vec_cs[:self.surface. number_of_vertices] = self.surface.coupling_strength sp_cs = sparse.csc_matrix( (vec_cs, (ind, ind)), shape=(self.number_of_nodes, self.number_of_nodes)) local_coupling = sp_cs * self.surface.local_connectivity.matrix if self.stimulus is None: stimulus = 0.0 else: # TODO: Consider changing to simulator absolute time... This is an open discussion, a matter of interpretation of the stimuli time axis. time = numpy.arange(0, simulation_length, self.integrator.dt) time = time[numpy.newaxis, :] self.stimulus.configure_time(time) stimulus = numpy.zeros((self.model.nvar, self.number_of_nodes, 1)) LOG.debug("%s: stimulus shape is: %s" % (str(self), str(stimulus.shape))) # initial state, history[timepoint[0], state_variables, nodes, modes] state = history[self.current_step % horizon, :] LOG.debug("%s: state shape is: %s" % (str(self), str(state.shape))) if self.surface is not None: # the vertex mapping array is huge but sparse. # csr because I expect the row to have one value and I expect the dot to proceed row wise. vertex_mapping = sparse.csr_matrix(self.surface.vertex_mapping) # this is big a well. same shape as the vertex mapping. region_average = sparse.csr_matrix(region_average) node_coupling_shape = (vertex_mapping.shape[0], ncvar, self.model.number_of_modes) delayed_state = numpy.zeros( (number_of_regions, ncvar, number_of_regions, self.model.number_of_modes)) for step in xrange(self.current_step + 1, self.current_step + int_steps + 1): time_indices = (step - 1 - idelays) % horizon if self.surface is None: get_state(history, time_indices, cvar, node_ids, out=delayed_state) node_coupling = coupling(weights, state[self.model.cvar], delayed_state) else: get_state(region_history, time_indices, cvar, node_ids, out=delayed_state) region_coupling = coupling( weights, region_history[(step - 1) % horizon, self.model.cvar], delayed_state) node_coupling = numpy.empty(node_coupling_shape) # sparse matrices cannot multiply with 3d arrays so we use a loop over the modes for mi in xrange(self.model.number_of_modes): node_coupling[..., mi] = vertex_mapping * region_coupling[..., mi].T node_coupling = node_coupling.transpose((1, 0, 2)) if self.stimulus is not None: stimulus[self.model.cvar, :, :] = numpy.reshape( self.stimulus(step - (self.current_step + 1)), (1, -1, 1)) state = scheme(state, dfun, node_coupling, local_coupling, stimulus) history[step % horizon, :] = state if self.surface is not None: # this optimisation is similar to the one done for vertex_mapping above step_avg = numpy.empty((number_of_regions, state.shape[0], self.model.number_of_modes)) for mi in xrange(self.model.number_of_modes): step_avg[..., mi] = region_average.dot(state[..., mi].T) region_history[step % horizon, :] = step_avg.transpose( (1, 0, 2)) # monitor.things e.g. raw, average, eeg, meg, fmri... output = [monitor.record(step, state) for monitor in self.monitors] if any(outputi is not None for outputi in output): yield output # This -1 is here for not repeating the point on resume self.current_step = self.current_step + int_steps - 1 self.history = history def configure_history(self, initial_conditions=None): """ Set initial conditions for the simulation using either the provided initial_conditions or, if none are provided, the model's initial() method. This method is called durin the Simulator's __init__(). Any initial_conditions that are provided as an argument are expected to have dimensions 1, 2, and 3 with shapse corresponding to the number of state_variables, nodes and modes, respectively. If the provided inital_conditions are shorter in time (dim=0) than the required history the model's initial() method is called to make up the difference. """ history = self.history if initial_conditions is None: msg = "%s: Setting default history using model's initial() method." LOG.info(msg % str(self)) history = self.model.initial(self.integrator.dt, self.good_history_shape) else: # history should be [timepoints, state_variables, nodes, modes] LOG.info("%s: Received initial conditions as arg." % str(self)) ic_shape = initial_conditions.shape if ic_shape[1:] != self.good_history_shape[1:]: msg = "%s: bad initial_conditions[1:] shape %s, should be %s" msg %= self, ic_shape[1:], self.good_history_shape[1:] raise ValueError(msg) else: if ic_shape[0] >= self.horizon: msg = "%s: Using last %s time-steps for history." LOG.info(msg % (str(self), self.horizon)) history = initial_conditions[ -self.horizon:, :, :, :].copy() else: msg = "%s: initial_conditions shorter than required." LOG.info(msg % str(self)) msg = "%s: Using model's initial() method for difference." LOG.info(msg % str(self)) history = self.model.initial(self.integrator.dt, self.good_history_shape) csmh = self.current_step % self.horizon history = numpy.roll(history, -csmh, axis=0) history[:ic_shape[0], :, :, :] = initial_conditions history = numpy.roll(history, csmh, axis=0) self.current_step += ic_shape[0] - 1 msg = "%s: history shape is: %s" LOG.debug(msg % (str(self), str(history.shape))) self.history = history def configure_integrator_noise(self): """ This enables having noise to be state variable specific and/or to enter only via specific brain structures, for example it we only want to consider noise as an external input entering the brain via appropriate thalamic nuclei. Support 3 possible shapes: 1) number_of_nodes; 2) number_of_state_variables; and 3) (number_of_state_variables, number_of_nodes). """ noise = self.integrator.noise if self.integrator.noise.ntau > 0.0: self.integrator.noise.configure_coloured( self.integrator.dt, self.good_history_shape[1:]) else: self.integrator.noise.configure_white(self.integrator.dt, self.good_history_shape[1:]) if self.surface is not None: if self.integrator.noise.nsig.size == self.connectivity.number_of_regions: self.integrator.noise.nsig = self.integrator.noise.nsig[ self.surface.region_mapping] elif self.integrator.noise.nsig.size == self.model.nvar * self.connectivity.number_of_regions: self.integrator.noise.nsig = self.integrator.noise.nsig[:, self. surface . region_mapping] good_nsig_shape = (self.model.nvar, self.number_of_nodes, self.model.number_of_modes) nsig = self.integrator.noise.nsig LOG.debug("Simulator.integrator.noise.nsig shape: %s" % str(nsig.shape)) if nsig.shape in (good_nsig_shape, (1, )): return elif nsig.shape == (self.model.nvar, ): nsig = nsig.reshape((self.model.nvar, 1, 1)) elif nsig.shape == (self.number_of_nodes, ): nsig = nsig.reshape((1, self.number_of_nodes, 1)) elif nsig.shape == (self.model.nvar, self.number_of_nodes): nsig = nsig.reshape((self.model.nvar, self.number_of_nodes, 1)) else: msg = "Bad Simulator.integrator.noise.nsig shape: %s" LOG.error(msg % str(nsig.shape)) LOG.debug("Simulator.integrator.noise.nsig shape: %s" % str(nsig.shape)) self.integrator.noise.nsig = nsig def configure_monitors(self): """ Configure the requested Monitors for this Simulator """ if not isinstance(self.monitors, (list, tuple)): self.monitors = [self.monitors] # Configure monitors for monitor in self.monitors: monitor.config_for_sim(self) def configure_stimuli(self): """ Configure the defined Stimuli for this Simulator """ if self.stimulus is not None: if self.surface: self.stimulus.configure_space(self.surface.region_mapping) else: self.stimulus.configure_space() def memory_requirement(self): """ Return an estimated of the memory requirements (Bytes) for this simulator's current configuration. """ self._guesstimate_memory_requirement() return self._memory_requirement_guess def runtime(self, simulation_length): """ Return an estimated run time (seconds) for the simulator's current configuration and a specified simulation length. """ self.simulation_length = simulation_length self._guesstimate_runtime() return self._runtime def storage_requirement(self, simulation_length): """ Return an estimated storage requirement (Bytes) for the simulator's current configuration and a specified simulation length. """ self.simulation_length = simulation_length self._calculate_storage_requirement() return self._storage_requirement def _guesstimate_memory_requirement(self): """ guesstimate the memory required for this simulator. Guesstimate is based on the shape of the dominant arrays, and as such can operate before configuration. NOTE: Assumes returned/yeilded data is in some sense "taken care of" in the world outside the simulator, and so doesn't consider it, making the simulator's history, and surface if present, the dominant memory pigs... """ if self.surface: number_of_nodes = self.surface.number_of_vertices else: number_of_nodes = self.connectivity.number_of_regions number_of_regions = self.connectivity.number_of_regions magic_number = 2.42 # Current guesstimate is low by about a factor of 2, seems safer to over estimate... bits_64 = 8.0 # Bytes bits_32 = 4.0 # Bytes #NOTE: The speed hack for getting the first element of hist shape should # partially resolves calling of this method with a non-configured # connectivity, there remains the less common issue if no tract_lengths... hist_shape = ( self.connectivity.tract_lengths.max() / (self.conduction_speed or self.connectivity.speed or 3.0) / self.integrator.dt, self.model.nvar, number_of_nodes, self.model.number_of_modes) memreq = numpy.prod(hist_shape) * bits_64 if self.surface: memreq += self.surface.number_of_triangles * 3 * bits_32 * 2 # normals memreq += self.surface.number_of_vertices * 3 * bits_64 * 2 # normals memreq += number_of_nodes * number_of_regions * bits_64 * 4 # vertex_mapping, region_average, region_sum #???memreq += self.surface.local_connectivity.matrix.nnz * 8 if not isinstance(self.monitors, (list, tuple)): monitors = [self.monitors] else: monitors = self.monitors for monitor in monitors: if not isinstance(monitor, monitors_module.Bold): stock_shape = (monitor.period / self.integrator.dt, self.model.variables_of_interest.shape[0], number_of_nodes, self.model.number_of_modes) memreq += numpy.prod(stock_shape) * bits_64 if hasattr(monitor, "sensors"): try: memreq += number_of_nodes * monitor.sensors.number_of_sensors * bits_64 # projection_matrix except AttributeError: LOG.debug( "No sensors specified, guessing memory based on default EEG." ) memreq += number_of_nodes * 62.0 * bits_64 else: stock_shape = (monitor.hrf_length * monitor._stock_sample_rate, self.model.variables_of_interest.shape[0], number_of_nodes, self.model.number_of_modes) interim_stock_shape = ( 1.0 / (2.0**-2 * self.integrator.dt), self.model.variables_of_interest.shape[0], number_of_nodes, self.model.number_of_modes) memreq += numpy.prod(stock_shape) * bits_64 memreq += numpy.prod(interim_stock_shape) * bits_64 if psutil and memreq > psutil.virtual_memory().total: LOG.error("This is gonna get ugly...") self._memory_requirement_guess = magic_number * memreq msg = "Memory requirement guesstimate: simulation will need about %.1f MB" LOG.info(msg % (self._memory_requirement_guess / 1048576.0)) def _census_memory_requirement(self): """ Guesstimate the memory required for this simulator. Guesstimate is based on a census of the dominant arrays after the simulator has been configured. NOTE: Assumes returned/yeilded data is in some sense "taken care of" in the world outside the simulator, and so doesn't consider it, making the simulator's history, and surface if present, the dominant memory pigs... """ magic_number = 2.42 # Current guesstimate is low by about a factor of 2, seems safer to over estimate... memreq = self.history.nbytes try: memreq += self.surface.triangles.nbytes * 2 memreq += self.surface.vertices.nbytes * 2 memreq += self.surface.vertex_mapping.nbytes * 4 # vertex_mapping, region_average, region_sum memreq += self.surface.eeg_projection.nbytes memreq += self.surface.local_connectivity.matrix.nnz * 8 except AttributeError: pass for monitor in self.monitors: memreq += monitor._stock.nbytes if isinstance(monitor, monitors_module.Bold): memreq += monitor._interim_stock.nbytes if psutil and memreq > psutil.virtual_memory().total: LOG.error("This is gonna get ugly...") self._memory_requirement_census = magic_number * memreq #import pdb; pdb.set_trace() msg = "Memory requirement census: simulation will need about %.1f MB" LOG.info(msg % (self._memory_requirement_census / 1048576.0)) def _guesstimate_runtime(self): """ Estimate the runtime for this simulator. Spread in parallel executions of larger arrays means this will be an over-estimation, or rather a single threaded estimation... Different choice of integrators and monitors has an additional effect, on the magic number though relatively minor """ magic_number = 6.57e-06 # seconds self._runtime = (magic_number * self.number_of_nodes * self.model.nvar * self.model.number_of_modes * self.simulation_length / self.integrator.dt) msg = "Simulation single-threaded runtime should be about %s seconds!" LOG.info(msg % str(int(self._runtime))) def _calculate_storage_requirement(self): """ Calculate the storage requirement for the simulator, configured with models, monitors, etc being run for a particular simulation length. While this is only approximate, it is far more reliable/accurate than the memory and runtime guesstimates. """ LOG.info("Calculating storage requirement for ...") strgreq = 0 for monitor in self.monitors: # Avoid division by zero for monitor not yet configured # (in framework this is executed, when only preconfigure has been called): current_period = monitor.period or self.integrator.dt strgreq += (TvbProfile.current.MAGIC_NUMBER * self.simulation_length * self.number_of_nodes * self.model.nvar * self.model.number_of_modes / current_period) LOG.info("Calculated storage requirement for simulation: %d " % int(strgreq)) self._storage_requirement = int(strgreq)
class Simulator(core.Type): "A Simulator assembles components required to perform simulations." connectivity = connectivity.Connectivity( label="Long-range connectivity", default=None, order=1, required=True, filters_ui=[ UIFilter(linked_elem_name="region_mapping_data", linked_elem_field=FilterChain.datatype + "._connectivity", linked_elem_parent_name="surface", linked_elem_parent_option=None), UIFilter(linked_elem_name="region_mapping", linked_elem_field=FilterChain.datatype + "._connectivity", linked_elem_parent_name="monitors", linked_elem_parent_option="EEG"), UIFilter(linked_elem_name="region_mapping", linked_elem_field=FilterChain.datatype + "._connectivity", linked_elem_parent_name="monitors", linked_elem_parent_option="MEG"), UIFilter(linked_elem_name="region_mapping", linked_elem_field=FilterChain.datatype + "._connectivity", linked_elem_parent_name="monitors", linked_elem_parent_option="iEEG") ], doc="""A tvb.datatypes.Connectivity object which contains the structural long-range connectivity data (i.e., white-matter tracts). In combination with the ``Long-range coupling function`` it defines the inter-regional connections. These couplings undergo a time delay via signal propagation with a propagation speed of ``Conduction Speed``""") conduction_speed = basic.Float( label="Conduction Speed", default=3.0, order=2, required=False, range=basic.Range(lo=0.01, hi=100.0, step=1.0), doc="""Conduction speed for ``Long-range connectivity`` (mm/ms)""") coupling = coupling.Coupling( label="Long-range coupling function", default=coupling.Linear(), required=True, order=2, doc="""The coupling function is applied to the activity propagated between regions by the ``Long-range connectivity`` before it enters the local dynamic equations of the Model. Its primary purpose is to 'rescale' the incoming activity to a level appropriate to Model.""") surface = cortex.Cortex( label="Cortical surface", default=None, order=3, required=False, filters_backend=FilterChain( fields=[FilterChain.datatype + '._valid_for_simulations'], operations=["=="], values=[True]), filters_ui=[ UIFilter(linked_elem_name="projection_matrix_data", linked_elem_field=FilterChain.datatype + "._sources", linked_elem_parent_name="monitors", linked_elem_parent_option="EEG"), UIFilter(linked_elem_name="local_connectivity", linked_elem_field=FilterChain.datatype + "._surface", linked_elem_parent_name="surface", linked_elem_parent_option=None) ], doc="""By default, a Cortex object which represents the cortical surface defined by points in the 3D physical space and their neighborhood relationship. In the current TVB version, when setting up a surface-based simulation, the option to configure the spatial spread of the ``Local Connectivity`` is available.""") stimulus = patterns.SpatioTemporalPattern( label="Spatiotemporal stimulus", default=None, order=4, required=False, doc= """A ``Spatiotemporal stimulus`` can be defined at the region or surface level. It's composed of spatial and temporal components. For region defined stimuli the spatial component is just the strength with which the temporal component is applied to each region. For surface defined stimuli, a (spatial) function, with finite-support, is used to define the strength of the stimuli on the surface centred around one or more focal points. In the current version of TVB, stimuli are applied to the first state variable of the ``Local dynamic model``.""") model = models.Model( label="Local dynamic model", default=models.Generic2dOscillator, required=True, order=5, doc="""A tvb.simulator.Model object which describe the local dynamic equations, their parameters, and, to some extent, where connectivity (local and long-range) enters and which state-variables the Monitors monitor. By default the 'Generic2dOscillator' model is used. Read the Scientific documentation to learn more about this model.""") integrator = integrators.Integrator( label="Integration scheme", default=integrators.HeunDeterministic, required=True, order=6, doc="""A tvb.simulator.Integrator object which is an integration scheme with supporting attributes such as integration step size and noise specification for stochastic methods. It is used to compute the time courses of the model state variables.""") initial_conditions = arrays.FloatArray( label="Initial Conditions", default=None, order=-1, required=False, doc="""Initial conditions from which the simulation will begin. By default, random initial conditions are provided. Needs to be the same shape as simulator 'history', ie, initial history function which defines the minimal initial state of the network with time delays before time t=0. If the number of time points in the provided array is insufficient the array will be padded with random values based on the 'state_variables_range' attribute.""") monitors = monitors.Monitor( label="Monitor(s)", default=monitors.TemporalAverage, required=True, order=8, select_multiple=True, doc="""A tvb.simulator.Monitor or a list of tvb.simulator.Monitor objects that 'know' how to record relevant data from the simulation. Two main types exist: 1) simple, spatial and temporal, reductions (subsets or averages); 2) physiological measurements, such as EEG, MEG and fMRI. By default the Model's specified variables_of_interest are returned, temporally downsampled from the raw integration rate to a sample rate of 1024Hz.""") simulation_length = basic.Float( label="Simulation Length (ms, s, m, h)", default=1000.0, # ie 1 second required=True, order=9, doc="""The length of a simulation (default in milliseconds).""") history = None # type: SparseHistory @property def good_history_shape(self): "Returns expected history shape." n_reg = self.connectivity.number_of_regions shape = self.horizon, len( self.model.state_variables), n_reg, self.model.number_of_modes return shape calls = 0 current_step = 0 number_of_nodes = None _memory_requirement_guess = None _memory_requirement_census = None _storage_requirement = None _runtime = None # methods consist of # 1) generic configure # 2) component specific configure # 3) loop preparation # 4) loop step # 5) estimations def preconfigure(self): "Configure just the basic fields, so that memory can be estimated." self.connectivity.configure() if self.surface: self.surface.configure() if self.stimulus: self.stimulus.configure() self.coupling.configure() self.model.configure() self.integrator.configure() # monitors needs to be a list or tuple, even if there is only one... if not isinstance(self.monitors, (list, tuple)): self.monitors = [self.monitors] # Configure monitors for monitor in self.monitors: monitor.configure() # "Nodes" refers to either regions or vertices + non-cortical regions. if self.surface is None: self.number_of_nodes = self.connectivity.number_of_regions LOG.info('Region simulation with %d ROI nodes', self.number_of_nodes) else: rm = self.surface.region_mapping unmapped = self.connectivity.unmapped_indices(rm) self._regmap = numpy.r_[rm, unmapped] self.number_of_nodes = self._regmap.shape[0] LOG.info( 'Surface simulation with %d vertices + %d non-cortical, %d total nodes', rm.size, unmapped.size, self.number_of_nodes) self._guesstimate_memory_requirement() def configure(self, full_configure=True): """Configure simulator and its components. The first step of configuration is to run the configure methods of all the Simulator's components, ie its traited attributes. Configuration of a Simulator primarily consists of calculating the attributes, etc, which depend on the combinations of the Simulator's traited attributes (keyword args). Converts delays from physical time units into integration steps and updates attributes that depend on combinations of the 6 inputs. Returns ------- sim: Simulator The configured Simulator instance. """ if full_configure: # When run from GUI, preconfigure is run separately, and we want to avoid running that part twice self.preconfigure() # Make sure spatialised model parameters have the right shape (number_of_nodes, 1) excluded_params = ("state_variable_range", "variables_of_interest", "noise", "psi_table", "nerf_table") spatial_reshape = self.model.spatial_param_reshape for param in self.model.trait.keys(): if param in excluded_params: continue # If it's a surface sim and model parameters were provided at the region level region_parameters = getattr(self.model, param) if self.surface is not None: if region_parameters.size == self.connectivity.number_of_regions: new_parameters = region_parameters[ self.surface.region_mapping].reshape(spatial_reshape) setattr(self.model, param, new_parameters) region_parameters = getattr(self.model, param) if region_parameters.size == self.number_of_nodes: new_parameters = region_parameters.reshape(spatial_reshape) setattr(self.model, param, new_parameters) # Configure spatial component of any stimuli self._configure_stimuli() # Set delays, provided in physical units, in integration steps. self.connectivity.set_idelays(self.integrator.dt) self.horizon = self.connectivity.idelays.max() + 1 # Reshape integrator.noise.nsig, if necessary. if isinstance(self.integrator, integrators.IntegratorStochastic): self._configure_integrator_noise() # Setup history self._configure_history(self.initial_conditions) # Configure Monitors to work with selected Model, etc... self._configure_monitors() # Estimate of memory usage. self._census_memory_requirement() # Allow user to chain configure to another call or assignment. return self def _handle_random_state(self, random_state): if random_state is not None: if isinstance(self.integrator, integrators.IntegratorStochastic): self.integrator.noise.random_stream.set_state(random_state) msg = "random_state supplied with seed %s" LOG.info(msg, self.integrator.noise.random_stream.get_state()[1][0]) else: LOG.warn( "random_state supplied for non-stochastic integration") def _prepare_local_coupling(self): if self.surface is None: local_coupling = 0.0 else: if self.surface.coupling_strength.size == 1: local_coupling = (self.surface.coupling_strength[0] * self.surface.local_connectivity.matrix) elif self.surface.coupling_strength.size == self.surface.number_of_vertices: ind = numpy.arange(self.number_of_nodes, dtype=numpy.intc) vec_cs = numpy.zeros((self.number_of_nodes, )) vec_cs[:self.surface. number_of_vertices] = self.surface.coupling_strength sp_cs = scipy.sparse.csc_matrix( (vec_cs, (ind, ind)), shape=(self.number_of_nodes, self.number_of_nodes)) local_coupling = sp_cs * self.surface.local_connectivity.matrix if local_coupling.shape[1] < self.number_of_nodes: # must match unmapped indices handling in preconfigure from scipy.sparse import csr_matrix, vstack, hstack nn = self.number_of_nodes npad = nn - local_coupling.shape[0] rpad = csr_matrix((local_coupling.shape[0], npad)) bpad = csr_matrix((npad, nn)) local_coupling = vstack([hstack([local_coupling, rpad]), bpad]) return local_coupling def _prepare_stimulus(self): if self.stimulus is None: stimulus = 0.0 else: time = numpy.r_[0.0:self.simulation_length:self.integrator.dt] self.stimulus.configure_time(time.reshape((1, -1))) stimulus = numpy.zeros((self.model.nvar, self.number_of_nodes, 1)) LOG.debug("stimulus shape is: %s", stimulus.shape) return stimulus def _loop_compute_node_coupling(self, step): "Compute delayed node coupling values." coupling = self.coupling(step, self.history) if self.surface is not None: coupling = coupling[:, self._regmap] return coupling def _loop_update_stimulus(self, step, stimulus): "Update stimulus values for current time step." if self.stimulus is not None: # TODO stim_step != current step stim_step = step - (self.current_step + 1) stimulus[self.model.cvar, :, :] = self.stimulus(stim_step).reshape( (1, -1, 1)) def _loop_update_history(self, step, n_reg, state): "Update history." if self.surface is not None and state.shape[ 1] > self.connectivity.number_of_regions: region_state = numpy.zeros( (n_reg, state.shape[0], state.shape[2])) # temp (node, cvar, mode) numpy_add_at(region_state, self._regmap, state.transpose( (1, 0, 2))) # sum within region region_state /= numpy.bincount(self._regmap).reshape( (-1, 1, 1)) # div by n node in region state = region_state.transpose((1, 0, 2)) # (cvar, node, mode) self.history.update(step, state) def _loop_monitor_output(self, step, state): observed = self.model.observe(state) output = [monitor.record(step, observed) for monitor in self.monitors] if any(outputi is not None for outputi in output): return output def __call__(self, simulation_length=None, random_state=None): """ Return an iterator which steps through simulation time, generating monitor outputs. See the run method for a convenient way to collect all output in one call. :param simulation_length: Length of the simulation to perform in ms. :param random_state: State of NumPy RNG to use for stochastic integration. :return: Iterator over monitor outputs. """ self.calls += 1 if simulation_length is not None: self.simulation_length = simulation_length # intialization self._guesstimate_runtime() self._calculate_storage_requirement() self._handle_random_state(random_state) n_reg = self.connectivity.number_of_regions local_coupling = self._prepare_local_coupling() stimulus = self._prepare_stimulus() state = self.current_state # integration loop n_steps = int(math.ceil(self.simulation_length / self.integrator.dt)) for step in range(self.current_step + 1, self.current_step + n_steps + 1): # needs implementing by hsitory + coupling? node_coupling = self._loop_compute_node_coupling(step) self._loop_update_stimulus(step, stimulus) state = self.integrator.scheme(state, self.model.dfun, node_coupling, local_coupling, stimulus) self._loop_update_history(step, n_reg, state) output = self._loop_monitor_output(step, state) if output is not None: yield output self.current_state = state self.current_step = self.current_step + n_steps - 1 # -1 : don't repeat last point def _configure_history(self, initial_conditions): """ Set initial conditions for the simulation using either the provided initial_conditions or, if none are provided, the model's initial() method. This method is called durin the Simulator's __init__(). Any initial_conditions that are provided as an argument are expected to have dimensions 1, 2, and 3 with shapse corresponding to the number of state_variables, nodes and modes, respectively. If the provided inital_conditions are shorter in time (dim=0) than the required history the model's initial() method is called to make up the difference. """ rng = numpy.random if hasattr(self.integrator, 'noise'): rng = self.integrator.noise.random_stream # Default initial conditions if initial_conditions is None: n_time, n_svar, n_node, n_mode = self.good_history_shape LOG.info( 'Preparing initial history of shape %r using model.initial()', self.good_history_shape) if self.surface is not None: n_node = self.number_of_nodes history = self.model.initial(self.integrator.dt, (n_time, n_svar, n_node, n_mode), rng) # ICs provided else: # history should be [timepoints, state_variables, nodes, modes] LOG.info('Using provided initial history of shape %r', initial_conditions.shape) n_time, n_svar, n_node, n_mode = ic_shape = initial_conditions.shape nr = self.connectivity.number_of_regions if self.surface is not None and n_node == nr: initial_conditions = initial_conditions[:, :, self._regmap] return self._configure_history(initial_conditions) elif ic_shape[1:] != self.good_history_shape[1:]: raise ValueError( "Incorrect history sample shape %s, expected %s" % ic_shape[1:], self.good_history_shape[1:]) else: if ic_shape[0] >= self.horizon: LOG.debug("Using last %d time-steps for history.", self.horizon) history = initial_conditions[ -self.horizon:, :, :, :].copy() else: LOG.debug('Padding initial conditions with model.initial') history = self.model.initial(self.integrator.dt, self.good_history_shape, rng) shift = self.current_step % self.horizon history = numpy.roll(history, -shift, axis=0) history[:ic_shape[0], :, :, :] = initial_conditions history = numpy.roll(history, shift, axis=0) self.current_step += ic_shape[0] - 1 LOG.info('Final initial history shape is %r', history.shape) # create initial state from history self.current_state = history[self.current_step % self.horizon].copy() LOG.debug('initial state has shape %r' % (self.current_state.shape, )) if self.surface is not None and history.shape[ 2] > self.connectivity.number_of_regions: n_reg = self.connectivity.number_of_regions (nt, ns, _, nm), ax = history.shape, (2, 0, 1, 3) region_history = numpy.zeros((nt, ns, n_reg, nm)) numpy_add_at(region_history.transpose(ax), self._regmap, history.transpose(ax)) region_history /= numpy.bincount(self._regmap).reshape((-1, 1)) history = region_history # create history query implementation self.history = SparseHistory(self.connectivity.weights, self.connectivity.idelays, self.model.cvar, self.model.number_of_modes) # initialize its buffer self.history.initialize(history) def _configure_integrator_noise(self): """ This enables having noise to be state variable specific and/or to enter only via specific brain structures, for example it we only want to consider noise as an external input entering the brain via appropriate thalamic nuclei. Support 3 possible shapes: 1) number_of_nodes; 2) number_of_state_variables; and 3) (number_of_state_variables, number_of_nodes). """ noise = self.integrator.noise if self.integrator.noise.ntau > 0.0: self.integrator.noise.configure_coloured( self.integrator.dt, self.good_history_shape[1:]) else: self.integrator.noise.configure_white(self.integrator.dt, self.good_history_shape[1:]) if self.surface is not None: if self.integrator.noise.nsig.size == self.connectivity.number_of_regions: self.integrator.noise.nsig = self.integrator.noise.nsig[ self.surface.region_mapping] elif self.integrator.noise.nsig.size == self.model.nvar * self.connectivity.number_of_regions: self.integrator.noise.nsig = self.integrator.noise.nsig[:, self. surface . region_mapping] good_nsig_shape = (self.model.nvar, self.number_of_nodes, self.model.number_of_modes) nsig = self.integrator.noise.nsig LOG.debug("Given noise shape is %s", nsig.shape) if nsig.shape in (good_nsig_shape, (1, )): return elif nsig.shape == (self.model.nvar, ): nsig = nsig.reshape((self.model.nvar, 1, 1)) elif nsig.shape == (self.number_of_nodes, ): nsig = nsig.reshape((1, self.number_of_nodes, 1)) elif nsig.shape == (self.model.nvar, self.number_of_nodes): nsig = nsig.reshape((self.model.nvar, self.number_of_nodes, 1)) else: msg = "Bad Simulator.integrator.noise.nsig shape: %s" LOG.error(msg % str(nsig.shape)) LOG.debug("Corrected noise shape is %s", nsig.shape) self.integrator.noise.nsig = nsig def _configure_monitors(self): """ Configure the requested Monitors for this Simulator """ # Coerce to list if required if not isinstance(self.monitors, (list, tuple)): self.monitors = [self.monitors] # Configure monitors for monitor in self.monitors: monitor.config_for_sim(self) def _configure_stimuli(self): """ Configure the defined Stimuli for this Simulator """ if self.stimulus is not None: if self.surface: self.stimulus.configure_space(self.surface.region_mapping) else: self.stimulus.configure_space() # used by simulator adaptor def memory_requirement(self): """ Return an estimated of the memory requirements (Bytes) for this simulator's current configuration. """ self._guesstimate_memory_requirement() return self._memory_requirement_guess # appears to be unused def runtime(self, simulation_length): """ Return an estimated run time (seconds) for the simulator's current configuration and a specified simulation length. """ self.simulation_length = simulation_length self._guesstimate_runtime() return self._runtime # used by simulator adaptor def storage_requirement(self, simulation_length): """ Return an estimated storage requirement (Bytes) for the simulator's current configuration and a specified simulation length. """ self.simulation_length = simulation_length self._calculate_storage_requirement() return self._storage_requirement def _guesstimate_memory_requirement(self): """ guesstimate the memory required for this simulator. Guesstimate is based on the shape of the dominant arrays, and as such can operate before configuration. NOTE: Assumes returned/yeilded data is in some sense "taken care of" in the world outside the simulator, and so doesn't consider it, making the simulator's history, and surface if present, the dominant memory pigs... """ if self.surface: number_of_nodes = self.surface.number_of_vertices else: number_of_nodes = self.connectivity.number_of_regions number_of_regions = self.connectivity.number_of_regions magic_number = 2.42 # Current guesstimate is low by about a factor of 2, seems safer to over estimate... bits_64 = 8.0 # Bytes bits_32 = 4.0 # Bytes #NOTE: The speed hack for getting the first element of hist shape should # partially resolves calling of this method with a non-configured # connectivity, there remains the less common issue if no tract_lengths... hist_shape = ( self.connectivity.tract_lengths.max() / (self.conduction_speed or self.connectivity.speed or 3.0) / self.integrator.dt, self.model.nvar, number_of_nodes, self.model.number_of_modes) LOG.debug("Estimated history shape is %r", hist_shape) memreq = numpy.prod(hist_shape) * bits_64 if self.surface: memreq += self.surface.number_of_triangles * 3 * bits_32 * 2 # normals memreq += self.surface.number_of_vertices * 3 * bits_64 * 2 # normals memreq += number_of_nodes * number_of_regions * bits_64 * 4 # region_mapping, region_average, region_sum #???memreq += self.surface.local_connectivity.matrix.nnz * 8 if not hasattr(self.monitors, '__len__'): self.monitors = [self.monitors] for monitor in self.monitors: if not isinstance(monitor, monitors.Bold): stock_shape = (monitor.period / self.integrator.dt, self.model.variables_of_interest.shape[0], number_of_nodes, self.model.number_of_modes) memreq += numpy.prod(stock_shape) * bits_64 if hasattr(monitor, "sensors"): try: memreq += number_of_nodes * monitor.sensors.number_of_sensors * bits_64 # projection_matrix except AttributeError: LOG.debug( "No sensors specified, guessing memory based on default EEG." ) memreq += number_of_nodes * 62.0 * bits_64 else: stock_shape = (monitor.hrf_length * monitor._stock_sample_rate, self.model.variables_of_interest.shape[0], number_of_nodes, self.model.number_of_modes) interim_stock_shape = ( 1.0 / (2.0**-2 * self.integrator.dt), self.model.variables_of_interest.shape[0], number_of_nodes, self.model.number_of_modes) memreq += numpy.prod(stock_shape) * bits_64 memreq += numpy.prod(interim_stock_shape) * bits_64 if psutil and memreq > psutil.virtual_memory().total: LOG.warning( "There may be insufficient memory for this simulation.") self._memory_requirement_guess = magic_number * memreq msg = "Memory requirement estimate: simulation will need about %.1f MB" LOG.info(msg, self._memory_requirement_guess / 2**20) def _census_memory_requirement(self): """ Guesstimate the memory required for this simulator. Guesstimate is based on a census of the dominant arrays after the simulator has been configured. NOTE: Assumes returned/yeilded data is in some sense "taken care of" in the world outside the simulator, and so doesn't consider it, making the simulator's history, and surface if present, the dominant memory pigs... """ magic_number = 2.42 # Current guesstimate is low by about a factor of 2, seems safer to over estimate... memreq = self.history.nbytes try: memreq += self.surface.triangles.nbytes * 2 memreq += self.surface.vertices.nbytes * 2 memreq += self.surface.region_mapping.nbytes * self.number_of_nodes * 8. * 4 # region_average, region_sum memreq += self.surface.eeg_projection.nbytes memreq += self.surface.local_connectivity.matrix.nnz * 8 except AttributeError: pass for monitor in self.monitors: memreq += monitor._stock.nbytes if isinstance(monitor, monitors.Bold): memreq += monitor._interim_stock.nbytes if psutil and memreq > psutil.virtual_memory().total: LOG.warning("Memory estimate exceeds total available RAM.") self._memory_requirement_census = magic_number * memreq #import pdb; pdb.set_trace() msg = "Memory requirement census: simulation will need about %.1f MB" LOG.info(msg % (self._memory_requirement_census / 1048576.0)) def _guesstimate_runtime(self): """ Estimate the runtime for this simulator. Spread in parallel executions of larger arrays means this will be an over-estimation, or rather a single threaded estimation... Different choice of integrators and monitors has an additional effect, on the magic number though relatively minor """ magic_number = 6.57e-06 # seconds self._runtime = (magic_number * self.number_of_nodes * self.model.nvar * self.model.number_of_modes * self.simulation_length / self.integrator.dt) msg = "Simulation runtime should be about %0.3f seconds" LOG.info(msg, self._runtime) def _calculate_storage_requirement(self): """ Calculate the storage requirement for the simulator, configured with models, monitors, etc being run for a particular simulation length. While this is only approximate, it is far more reliable/accurate than the memory and runtime guesstimates. """ LOG.info("Calculating storage requirement for ...") strgreq = 0 for monitor in self.monitors: # Avoid division by zero for monitor not yet configured # (in framework this is executed, when only preconfigure has been called): current_period = monitor.period or self.integrator.dt strgreq += (TvbProfile.current.MAGIC_NUMBER * self.simulation_length * self.number_of_nodes * self.model.nvar * self.model.number_of_modes / current_period) LOG.info("Calculated storage requirement for simulation: %d " % int(strgreq)) self._storage_requirement = int(strgreq) def run(self, **kwds): "Convenience method to call the simulator with **kwds and collect output data." ts, xs = [], [] for _ in self.monitors: ts.append([]) xs.append([]) wall_time_start = time.time() for data in self(**kwds): for tl, xl, t_x in zip(ts, xs, data): if t_x is not None: t, x = t_x tl.append(t) xl.append(x) elapsed_wall_time = time.time() - wall_time_start LOG.info("%.3f s elapsed, %.3fx real time", elapsed_wall_time, elapsed_wall_time * 1e3 / self.simulation_length) for i in range(len(ts)): ts[i] = numpy.array(ts[i]) xs[i] = numpy.array(xs[i]) return list(zip(ts, xs))