def test_meta_schedule_measure_callback_fail(): @derived_object class FailingMeasureCallback(PyMeasureCallback): def apply( self, task_scheduler: TaskScheduler, task_id: int, measure_candidates: List[MeasureCandidate], builds: List[BuilderResult], results: List[RunnerResult], ) -> None: raise ValueError("test") measure_callback = FailingMeasureCallback() with pytest.raises(ValueError, match="test"): measure_callback.apply( RoundRobin([], [], DummyBuilder(), DummyRunner(), DummyDatabase(), max_trials=1), 0, [MeasureCandidate(Schedule(Matmul), None)], [BuilderResult("test_build", None)], [RunnerResult([1.0, 2.1], None)], )
def test_meta_schedule_replay_func( TestClass: SearchStrategy): # pylint: disable = invalid-name num_trials_per_iter = 7 max_trials_per_task = 20 strategy = TestClass(num_trials_per_iter=num_trials_per_iter, max_trials_per_task=max_trials_per_task) context = TuneContext(mod=Matmul, space_generator=ScheduleFn(sch_fn=_schedule_matmul)) context.space_generator.initialize_with_tune_context(context) spaces = context.space_generator.generate_design_space(context.mod) strategy.initialize_with_tune_context(context) strategy.pre_tuning(spaces) (correct_sch, ) = ScheduleFn( sch_fn=_schedule_matmul).generate_design_space(Matmul) num_trials_each_iter: List[int] = [] candidates = strategy.generate_measure_candidates() while candidates is not None: num_trials_each_iter.append(len(candidates)) runner_results: List[RunnerResult] = [] for candidate in candidates: _is_trace_equal( candidate.sch, correct_sch, remove_decisions=(isinstance(strategy, ReplayTrace)), ) runner_results.append( RunnerResult(run_secs=[0.11, 0.41, 0.54], error_msg=None)) strategy.notify_runner_results(context, candidates, runner_results) candidates = strategy.generate_measure_candidates() strategy.post_tuning() assert num_trials_each_iter == [7, 7, 6]
def test_meta_schedule_measure_callback(): @derived_object class FancyMeasureCallback(PyMeasureCallback): def apply( self, task_scheduler: TaskScheduler, task_id: int, measure_candidates: List[MeasureCandidate], builds: List[BuilderResult], results: List[RunnerResult], ) -> None: assert len(measure_candidates) == 1 assert_structural_equal(measure_candidates[0].sch.mod, Matmul) assert (len(builds) == 1 and builds[0].error_msg is None and builds[0].artifact_path == "test_build") assert (len(results) == 1 and results[0].error_msg is None and len(results[0].run_secs) == 2) measure_callback = FancyMeasureCallback() measure_callback.apply( RoundRobin([], [], DummyBuilder(), DummyRunner(), DummyDatabase(), max_trials=1), 0, [MeasureCandidate(Schedule(Matmul), None)], [BuilderResult("test_build", None)], [RunnerResult([1.0, 2.1], None)], )
def test_meta_schedule_replay_trace(): num_trials_per_iter = 7 num_trials_total = 20 (example_sch, ) = ScheduleFn( sch_fn=_schedule_matmul).generate_design_space(Matmul) replay = ReplayTrace(num_trials_per_iter=num_trials_per_iter, num_trials_total=num_trials_total) tune_context = TuneContext(mod=Matmul) replay.initialize_with_tune_context(tune_context) num_trials_each_round: List[int] = [] replay.pre_tuning([example_sch]) while True: candidates = replay.generate_measure_candidates() if candidates is None: break num_trials_each_round.append(len(candidates)) runner_results: List[RunnerResult] = [] for candidate in candidates: assert _is_trace_equal(candidate.sch, example_sch) runner_results.append( RunnerResult(run_secs=[0.5, 0.4, 0.3], error_msg=None)) replay.notify_runner_results(runner_results) replay.post_tuning() assert num_trials_each_round == [7, 7, 6]
def test_meta_schedule_measure_callback_fail(): class FailingMeasureCallback(PyMeasureCallback): def apply( self, task_scheduler: TaskScheduler, task_id: int, measure_candidates: List[MeasureCandidate], builds: List[BuilderResult], results: List[RunnerResult], ) -> None: raise ValueError("test") measure_callback = FailingMeasureCallback() with pytest.raises(ValueError, match="test"): measure_callback.apply( TaskScheduler(), 0, [MeasureCandidate(Schedule(Matmul), None)], [BuilderResult("test_build", None)], [RunnerResult([1.0, 2.1], None)], )
def result(self) -> RunnerResult: return RunnerResult( [random.uniform(5, 30) for _ in range(random.randint(1, 10))], None)
def test_meta_schedule_evolutionary_search_early_stop( ): # pylint: disable = invalid-name] def _schedule_matmul_empty(sch: Schedule): return sch num_trials_per_iter = 10 max_trials_per_task = 100 strategy = EvolutionarySearch( num_trials_per_iter=num_trials_per_iter, max_trials_per_task=max_trials_per_task, population_size=5, init_measured_ratio=0.1, init_min_unmeasured=50, genetic_num_iters=3, genetic_mutate_prob=0.5, genetic_max_fail_count=10, eps_greedy=0.9, ) context = TuneContext( mod=Matmul, space_generator=ScheduleFn(sch_fn=_schedule_matmul_empty), mutator_probs={ DummyMutator(): 1.0, }, target=tvm.target.Target("llvm"), num_threads=1, # because we are using a mutator from the python side ) _scheduler = RoundRobin( tasks=[context], task_weights=[1.0], builder=ms.builder.LocalBuilder(), runner=ms.runner.LocalRunner(), database=DummyDatabase(), cost_model=ms.cost_model.RandomModel(), measure_callbacks=[], max_trials=1, ) context.space_generator.initialize_with_tune_context(context) spaces = context.space_generator.generate_design_space(context.mod) strategy.initialize_with_tune_context(context) strategy.pre_tuning(spaces) (correct_sch, ) = ScheduleFn( sch_fn=_schedule_matmul).generate_design_space(Matmul) num_trials_each_iter: List[int] = [] candidates = strategy.generate_measure_candidates() while candidates is not None: num_trials_each_iter.append(len(candidates)) runner_results: List[RunnerResult] = [] for candidate in candidates: _is_trace_equal( candidate.sch, correct_sch, remove_decisions=(isinstance(strategy, ReplayTrace)), ) runner_results.append( RunnerResult(run_secs=[0.11, 0.41, 0.54], error_msg=None)) strategy.notify_runner_results(context, candidates, runner_results) candidates = strategy.generate_measure_candidates() strategy.post_tuning() assert num_trials_each_iter == [1, 0, 0, 0, 0] del _scheduler
def _dummy_result(num_samples: int = 4, max_run_sec: int = 10): return RunnerResult(list(np.random.rand(num_samples) * max_run_sec + 1e-6), None)
def test_meta_schedule_evolutionary_search( ): # pylint: disable = invalid-name] @derived_object class DummyMutator(PyMutator): """Dummy Mutator for testing""" def initialize_with_tune_context(self, context: "TuneContext") -> None: pass def apply(self, trace: Trace, _) -> Optional[Trace]: return Trace(trace.insts, {}) @derived_object class DummyDatabase(PyDatabase): """Dummy Database for testing""" def __init__(self): super().__init__() self.records = [] self.workload_reg = [] def has_workload(self, mod: IRModule) -> bool: for workload in self.workload_reg: if tvm.ir.structural_equal(workload.mod, mod): return True return False def commit_tuning_record(self, record: TuningRecord) -> None: self.records.append(record) def commit_workload(self, mod: IRModule) -> Workload: for workload in self.workload_reg: if tvm.ir.structural_equal(workload.mod, mod): return workload workload = Workload(mod) self.workload_reg.append(workload) return workload def get_top_k(self, workload: Workload, top_k: int) -> List[TuningRecord]: return list( filter( lambda x: x.workload == workload, sorted(self.records, key=lambda x: sum(x.run_secs) / len(x.run_secs)), ))[:int(top_k)] def __len__(self) -> int: return len(self.records) def print_results(self) -> None: print("\n".join([str(r) for r in self.records])) num_trials_per_iter = 10 num_trials_total = 100 strategy = EvolutionarySearch( num_trials_per_iter=num_trials_per_iter, num_trials_total=num_trials_total, population_size=5, init_measured_ratio=0.1, init_min_unmeasured=50, genetic_num_iters=3, genetic_mutate_prob=0.5, genetic_max_fail_count=10, eps_greedy=0.9, ) context = TuneContext( mod=Matmul, space_generator=ScheduleFn(sch_fn=_schedule_matmul), mutator_probs={ DummyMutator(): 1.0, }, target=tvm.target.Target("llvm"), num_threads=1, # because we are using a mutator from the python side ) _scheduler = RoundRobin( tasks=[context], builder=LocalBuilder(), runner=LocalRunner(), database=DummyDatabase(), cost_model=RandomModel(), measure_callbacks=[], ) context.space_generator.initialize_with_tune_context(context) spaces = context.space_generator.generate_design_space(context.mod) strategy.initialize_with_tune_context(context) strategy.pre_tuning(spaces) (correct_sch, ) = ScheduleFn( sch_fn=_schedule_matmul).generate_design_space(Matmul) num_trials_each_iter: List[int] = [] candidates = strategy.generate_measure_candidates() while candidates is not None: num_trials_each_iter.append(len(candidates)) runner_results: List[RunnerResult] = [] for candidate in candidates: _is_trace_equal( candidate.sch, correct_sch, remove_decisions=(isinstance(strategy, ReplayTrace)), ) runner_results.append( RunnerResult(run_secs=[0.11, 0.41, 0.54], error_msg=None)) strategy.notify_runner_results(context, candidates, runner_results) candidates = strategy.generate_measure_candidates() strategy.post_tuning() print(num_trials_each_iter) correct_count = 10 # For each iteration except the last one assert num_trials_each_iter == [correct_count] * ( num_trials_total // correct_count) + ( [num_trials_total % correct_count] if num_trials_total % correct_count != 0 else []) del _scheduler
def result(self) -> RunnerResult: run_secs = [ random.uniform(5, 30) for _ in range(random.randint(1, 10)) ] return RunnerResult(run_secs, None)