Example #1
0
def test_schedule_create():
    m = tvm.var('m')
    n = tvm.var('n')
    l = tvm.var('l')
    A = tvm.placeholder((m, l), name='A')
    B = tvm.placeholder((n, l), name='B')
    AA = tvm.compute((m, l), lambda i, j: A[i, j])
    T = tvm.compute((m, n, l), lambda i, j, k: AA(i, k) * B(j, k))
    s = tvm.create_schedule(T.op)
    s[AA].set_scope("shared")
    xo, xi = s[T].split(T.op.axis[0], factor=10)
    xi1, xi2 = s[T].split(xi, factor=2)
    s[AA].compute_at(s[T], xi1)
    xo, xi = s[AA].split(AA.op.axis[0], factor=10)
    s[T].reorder(xi2, xi1)
    assert T.op.axis[1] in s[T].leaf_iter_vars

    # save load json
    json_str = tvm.save_json(s)
    s_loaded = tvm.load_json(json_str)
    assert isinstance(s_loaded, tvm.schedule.Schedule)
    assert(str(s_loaded.outputs[0].body) == str(s.outputs[0].body))

    # pickle unpickle
    dump = pkl.dumps(s)
    s_loaded = pkl.loads(dump)
    assert isinstance(s_loaded, tvm.schedule.Schedule)
    assert(str(s_loaded.outputs[0].body) == str(s.outputs[0].body))
Example #2
0
def test_schedule_create():
    m = tvm.var('m')
    n = tvm.var('n')
    l = tvm.var('l')
    A = tvm.placeholder((m, l), name='A')
    B = tvm.placeholder((n, l), name='B')
    AA = tvm.compute((m, l), lambda i, j: A[i, j])
    T = tvm.compute((m, n, l), lambda i, j, k: AA(i, k) * B(j, k))
    s = tvm.create_schedule(T.op)
    s[AA].set_scope("shared")
    xo, xi = s[T].split(T.op.axis[0], factor=10)
    xi1, xi2 = s[T].split(xi, factor=2)
    s[AA].compute_at(s[T], xi1)
    xo, xi = s[AA].split(AA.op.axis[0], factor=10)
    s[T].reorder(xi2, xi1)
    assert T.op.axis[1] in s[T].leaf_iter_vars

    # save load json
    json_str = tvm.save_json(s)
    s_loaded = tvm.load_json(json_str)
    assert isinstance(s_loaded, tvm.schedule.Schedule)
    assert(str(s_loaded.outputs[0].body) == str(s.outputs[0].body))

    # pickle unpickle
    dump = pkl.dumps(s)
    s_loaded = pkl.loads(dump)
    assert isinstance(s_loaded, tvm.schedule.Schedule)
    assert(str(s_loaded.outputs[0].body) == str(s.outputs[0].body))
Example #3
0
def test_function_attrs():
    param_names = ['a', 'b', 'c', 'd']
    params = tvm.convert([relay.var(n, shape=(5, 2)) for n in param_names])
    ret_type = relay.TupleType(tvm.convert([]))
    body = relay.Tuple(tvm.convert([]))
    type_params = tvm.convert([])
    fn = relay.Function(params, body, ret_type, type_params)
    model_params = {}
    for param in params[:1]:
        cty = param.type_annotation
        tensor = np.random.rand(*[int(sh) for sh in cty.shape]).astype(cty.dtype)
        model_params[param] = tvm.nd.array(tensor)
    fn = fn.set_params(model_params)
    assert fn.params == params
    assert fn.body == body
    assert fn.type_params == type_params
    assert fn.span == None
    str(fn)
    check_json_roundtrip(fn)
    json_str = tvm.save_json(fn)
    fn_after = tvm.load_json(json_str)
    model_params_after = fn_after.get_params()
    after_keys = [item[0] for item in model_params_after.items()]
    for key1, key2 in zip(model_params, after_keys):
        assert key1.name_hint == key2.name_hint
        p1 = model_params[key1]
        p2 = model_params_after[key2]
        np.testing.assert_allclose(p1.data.asnumpy(), p2.data.asnumpy())
Example #4
0
def test_with():
    n = tvm.var('n')
    m = tvm.var('m')
    l = tvm.var('l')

    A = tvm.placeholder((n, l), name='A')
    B = tvm.placeholder((m, l), name='B')
    with tvm.tag_scope(tag="gemm"):
        k = tvm.reduce_axis((0, l), name='k')
        C = tvm.compute((n, m),
                        lambda i, j: tvm.sum(A[i, k] * B[j, k], axis=k),
                        attrs={
                            "hello": 1,
                            "arr": [10, 12]
                        })

    assert C.op.tag == 'gemm'
    assert "hello" in C.op.attrs
    assert "xx" not in C.op.attrs
    assert C.op.attrs["hello"].value == 1
    CC = tvm.load_json(tvm.save_json(C))
    assert CC.op.attrs["hello"].value == 1
    assert CC.op.attrs["arr"][0].value == 10
    # str format happened to be json compatible
    assert json.loads(str(CC.op.attrs))["arr"][1] == 12
def test_make_sum():
    A = tvm.placeholder((2, 10), name='A')
    k = tvm.reduce_axis((0,10), "k")
    B = tvm.compute((2,), lambda i: tvm.sum(A[i, k], axis=k), name="B")
    json_str = tvm.save_json(B)
    BB = tvm.load_json(json_str)
    assert B.op.body[0].combiner is not None
    assert BB.op.body[0].combiner is not None
def test_const_saveload_json():
    # save load json
    x = tvm.const(1, "int32")
    y = tvm.const(10, "int32")
    z = x + y
    z = z + z
    json_str = tvm.save_json(z)
    zz = tvm.load_json(json_str)
    assert tvm.save_json(zz) == tvm.save_json(z)
Example #7
0
def test_map_save_load_json():
    a = tvm.var('a')
    b = tvm.var('b')
    amap = tvm.convert({a: 2, b: 3})
    json_str = tvm.save_json(amap)
    amap = tvm.load_json(json_str)
    assert len(amap) == 2
    dd = {kv[0].name: kv[1].value for kv in amap.items()}
    assert (dd == {"a": 2, "b": 3})
def test_make_smap():
    # save load json
    x = tvm.const(1, "int32")
    y = tvm.const(10, "int32")
    z = tvm.expr.Add(x, y)
    smap = tvm.convert({"z": z, "x": x})
    json_str = tvm.save_json(tvm.convert([smap]))
    arr = tvm.load_json(json_str)
    assert len(arr) == 1
    assert arr[0]["z"].a == arr[0]["x"]
Example #9
0
def test_make_smap():
    # save load json
    x = tvm.const(1)
    y = tvm.const(10)
    z = x + y
    smap = tvm.convert({"z": z, "x": x})
    json_str = tvm.save_json(tvm.convert([smap]))
    arr = tvm.load_json(json_str)
    assert len(arr) == 1
    assert arr[0]["z"].a == arr[0]["x"]
Example #10
0
def test_map_save_load_json():
    a = tvm.var('a')
    b = tvm.var('b')
    amap = tvm.convert({a: 2,
                        b: 3})
    json_str = tvm.save_json(amap)
    amap = tvm.load_json(json_str)
    assert len(amap) == 2
    dd = {kv[0].name : kv[1].value for kv in amap.items()}
    assert(dd == {"a": 2, "b": 3})
Example #11
0
def test_type_var():
    # type var in 0.6
    nodes = [
        {"type_key": ""},
        {"type_key": "relay.TypeVar",
         "attrs": {"kind": "0", "span": "0", "var": "2"}},
        {"type_key": "Variable",
         "attrs": {"dtype": "int32", "name": "in0"}},
        ]
    data = {
        "root" : 1,
        "nodes": nodes,
        "attrs": {"tvm_version": "0.6.0"},
        "b64ndarrays": [],
    }
    tvar = tvm.load_json(json.dumps(data))
    assert isinstance(tvar, relay.TypeVar)
    assert tvar.name_hint == "in0"
    nodes[1]["type_key"] = "relay.GlobalTypeVar"
    tvar = tvm.load_json(json.dumps(data))
    assert isinstance(tvar, relay.GlobalTypeVar)
    assert tvar.name_hint == "in0"
def test_env_func():
    @tvm.register_func("test.env_func")
    def test(x):
        return x + 1

    f = tvm.get_global_func("test.env_func")
    x = tvm.get_env_func("test.env_func")
    assert x.name == "test.env_func"
    json_str = tvm.save_json([x])
    y = tvm.load_json(json_str)[0]
    assert y.name == x.name
    assert y(1) == 2
    assert y.func(1) == 2

    x = tvm.make.node("attrs.TestAttrs", name="xx", padding=(3,4), func=y)
    assert x.name == "xx"
    assert x.padding[0].value == 3
    assert x.padding[1].value == 4
    assert x.axis == 10
    x = tvm.load_json(tvm.save_json(x))
    assert isinstance(x.func, tvm.container.EnvFunc)
    assert x.func(10) == 11
Example #13
0
def test_tensor_reduce():
    m = tvm.var('m')
    n = tvm.var('n')
    l = tvm.var('l')
    A = tvm.placeholder((m, l), name='A')
    B = tvm.placeholder((n, l), name='B')
    T = tvm.compute((m, n, l), lambda i, j, k: A[i, k] * B[j, k])
    rv = tvm.reduce_axis((0, A.shape[1]), "k")
    C = tvm.compute((m, n), lambda i, j: tvm.sum(T(i, j, rv+1), axis=rv))
    # json load save
    C_json = tvm.save_json(C)
    C_loaded = tvm.load_json(C_json)
    assert(isinstance(C_loaded, tvm.tensor.Tensor))
    assert(str(C_loaded) == str(C))
Example #14
0
def test_ndarray_reflection():
    x = np.random.uniform(size=(10, 2)).astype("float32")
    xx = tvm.nd.array(x)
    xnode = tvm.make.node("NDArrayWrapper", name="xx", array=xx)
    xnode2 = tvm.make.node("NDArrayWrapper", name="x2", array=xx)
    assert xnode.array.same_as(xx)
    json_str = tvm.save_json([xnode, xnode2])
    json_dict = json.loads(json_str)
    b64_str = json_dict["b64ndarrays"][0]
    decoded = py_str(base64.b64encode(base64.b64decode(b64_str)))
    assert b64_str == decoded
    xlist = tvm.load_json(json_str)
    np.testing.assert_equal(xlist[0].array.asnumpy(), xx.asnumpy())
    assert xlist[1].array == xlist[0].array
Example #15
0
def test_ndarray_reflection():
    x = np.random.uniform(size=(10, 2)).astype("float32")
    xx = tvm.nd.array(x)
    xnode = tvm.make.node("NDArrayWrapper", name="xx", array=xx)
    xnode2 = tvm.make.node("NDArrayWrapper", name="x2", array=xx)
    assert xnode.array.same_as(xx)
    json_str = tvm.save_json([xnode, xnode2])
    json_dict = json.loads(json_str)
    b64_str = json_dict["b64ndarrays"][0]
    decoded = py_str(base64.b64encode(base64.b64decode(b64_str)))
    assert b64_str == decoded
    xlist = tvm.load_json(json_str)
    np.testing.assert_equal(xlist[0].array.asnumpy(), xx.asnumpy())
    assert xlist[1].array == xlist[0].array
Example #16
0
def test_tensor_reduce():
    m = tvm.var('m')
    n = tvm.var('n')
    l = tvm.var('l')
    A = tvm.placeholder((m, l), name='A')
    B = tvm.placeholder((n, l), name='B')
    T = tvm.compute((m, n, l), lambda i, j, k: A[i, k] * B[j, k])
    rv = tvm.reduce_axis((0, A.shape[1]), "k")
    C = tvm.compute((m, n), lambda i, j: tvm.sum(T(i, j, rv+1), axis=rv))
    # json load save
    C_json = tvm.save_json(C)
    C_loaded = tvm.load_json(C_json)
    assert(isinstance(C_loaded, tvm.tensor.Tensor))
    assert(str(C_loaded) == str(C))
Example #17
0
    def visitProg(self, ctx: RelayParser.ProgContext) -> Union[expr.Expr, module.Module]:
        self.meta = None
        if ctx.METADATA():
            header, data = str(ctx.METADATA()).split("\n", 1)
            assert header == "METADATA:"
            self.meta = tvm.load_json(data)
        if ctx.defn():
            self.visit_list(ctx.defn())
            return self.module

        if ctx.expr():
            return self.visit(ctx.expr())

        return self.module
Example #18
0
def test_span():
    span = relay.Span(None, 1, 1)
    assert span.source == None
    assert span.lineno == 1
    assert span.col_offset == 1
    assert span.same_as(span)
    assert span == span
    assert isinstance(span, relay.base.Span)
    str(span)

    # span is not a node so we can't use graph_equal
    # to test the round trip
    back = tvm.load_json(tvm.save_json(span))
    assert back.source == span.source
    assert back.lineno == span.lineno
    assert back.col_offset == span.col_offset
Example #19
0
def test_span():
    span = relay.Span(None, 1, 1)
    assert span.source == None
    assert span.lineno == 1
    assert span.col_offset == 1
    assert span.same_as(span)
    assert span == span
    assert isinstance(span, relay.base.Span)
    str(span)

    # span is not a node so we can't use graph_equal
    # to test the round trip
    back = tvm.load_json(tvm.save_json(span))
    assert back.source == span.source
    assert back.lineno == span.lineno
    assert back.col_offset == span.col_offset
Example #20
0
def test_scan_multi_out():
    m = tvm.size_var("m")
    n = tvm.size_var("n")
    x1 = tvm.placeholder((m, n))
    s1 = tvm.placeholder((m, n))
    x2 = tvm.placeholder((m, n))
    s2 = tvm.placeholder((m, n))
    s1_init = tvm.compute((1, n), lambda _, i: x1[0, i])
    s2_init = tvm.compute((1, n), lambda _, i: x2[0, i])
    s1_update = tvm.compute(
        (m, n), lambda t, i: s1[t - 1, i] + s2[t - 1, i] + x1[t, i])
    s2_update = tvm.compute((m, n), lambda t, i: x2[t, i] + s2[t - 1, i])

    r0, r1 = tvm.scan([s1_init, s2_init], [s1_update, s2_update], [s1, s2])
    assert (r0.value_index == 0)
    assert (r1.value_index == 1)
    json_str = tvm.save_json(r0.op)
    zz = tvm.load_json(json_str)
    assert isinstance(zz, tvm.tensor.ScanOp)
Example #21
0
def test_scan_multi_out():
    m = tvm.var("m")
    n = tvm.var("n")
    x1 = tvm.placeholder((m, n))
    s1 = tvm.placeholder((m, n))
    x2 = tvm.placeholder((m, n))
    s2 = tvm.placeholder((m, n))
    s1_init = tvm.compute((1, n), lambda _, i: x1[0, i])
    s2_init = tvm.compute((1, n), lambda _, i: x2[0, i])
    s1_update = tvm.compute((m, n), lambda t, i: s1[t-1, i] + s2[t-1, i] + x1[t, i])
    s2_update = tvm.compute((m, n), lambda t, i: x2[t, i] + s2[t-1,i])

    r0, r1 = tvm.scan([s1_init, s2_init],
                      [s1_update, s2_update],
                      [s1, s2])
    assert(r0.value_index == 0)
    assert(r1.value_index == 1)
    json_str = tvm.save_json(r0.op)
    zz = tvm.load_json(json_str)
    assert isinstance(zz, tvm.tensor.ScanOp)
Example #22
0
def test_with():
    n = tvm.var('n')
    m = tvm.var('m')
    l = tvm.var('l')

    A = tvm.placeholder((n, l), name='A')
    B = tvm.placeholder((m, l), name='B')
    with tvm.tag_scope(tag="gemm"):
        k = tvm.reduce_axis((0, l), name='k')
        C = tvm.compute((n, m), lambda i, j: tvm.sum(A[i, k] * B[j, k], axis=k),
                        attrs={"hello" : 1, "arr": [10, 12]})

    assert C.op.tag == 'gemm'
    assert "hello" in C.op.attrs
    assert "xx" not in C.op.attrs
    assert C.op.attrs["hello"].value == 1
    CC = tvm.load_json(tvm.save_json(C))
    assert CC.op.attrs["hello"].value == 1
    assert CC.op.attrs["arr"][0].value == 10
    # str format happened to be json compatible
    assert json.loads(str(CC.op.attrs))["arr"][1] == 12
Example #23
0
def test_make_attrs():
    try:
        x = tvm.make.node("attrs.TestAttrs", unknown_key=1, name="xx")
        assert False
    except tvm.TVMError as e:
        assert str(e).find("unknown_key") != -1

    try:
        x = tvm.make.node("attrs.TestAttrs", axis=100, name="xx")
        assert False
    except tvm.TVMError as e:
        assert str(e).find("upper bound") != -1

    x = tvm.make.node("attrs.TestAttrs", name="xx", padding=(3,4))
    assert x.name == "xx"
    assert x.padding[0].value == 3
    assert x.padding[1].value == 4
    assert x.axis == 10

    dattr = tvm.make.node("DictAttrs", x=1, y=10, name="xyz", padding=(0,0))
    assert dattr.x.value == 1
    datrr = tvm.load_json(tvm.save_json(dattr))
    assert dattr.name.value == "xyz"
Example #24
0
def test_make_attrs():
    try:
        x = tvm.make.node("attrs.TestAttrs", unknown_key=1, name="xx")
        assert False
    except tvm.TVMError as e:
        assert str(e).find("unknown_key") != -1

    try:
        x = tvm.make.node("attrs.TestAttrs", axis=100, name="xx")
        assert False
    except tvm.TVMError as e:
        assert str(e).find("upper bound") != -1

    x = tvm.make.node("attrs.TestAttrs", name="xx", padding=(3,4))
    assert x.name == "xx"
    assert x.padding[0].value == 3
    assert x.padding[1].value == 4
    assert x.axis == 10


    dattr = tvm.make.node("DictAttrs", x=1, y=10, name="xyz", padding=(0,0))
    assert dattr.x.value == 1
    datrr = tvm.load_json(tvm.save_json(dattr))
    assert dattr.name.value == "xyz"
Example #25
0
def test_array_save_load_json():
    a = tvm.convert([1,2,3])
    json_str = tvm.save_json(a)
    a_loaded = tvm.load_json(json_str)
    assert(a[1].value == 2)
Example #26
0
def check_json_roundtrip(node):
    json_str = tvm.save_json(node)
    back = tvm.load_json(json_str)
    assert graph_equal(back, node)
Example #27
0
def check_json_roundtrip(node):
    json_str = tvm.save_json(node)
    back = tvm.load_json(json_str)
    assert graph_equal(back, node)
Example #28
0
def test_array_save_load_json():
    a = tvm.convert([1, 2, 3])
    json_str = tvm.save_json(a)
    a_loaded = tvm.load_json(json_str)
    assert (a[1].value == 2)