print('{} = {}'.format(attr.upper(), value)) print() IMAGE_PIXELS = 3072 CLASSES = 10 beginTime = time.time() data_sets = data_helpers.load_data() images_placeholder = tf.placeholder(tf.float32, shape=[None, IMAGE_PIXELS], name='images') labels_placeholder = tf.placeholder(tf.int64, shape=[None], name='image-labels') logits = two_layer_fc.inference(images_placeholder, IMAGE_PIXELS, FLAGS.hidden1, CLASSES, reg_constant=FLAGS.reg_constant) global_step = tf.Variable(0, name="global_step", trainable=False) accuracy = two_layer_fc.evaluation(logits, labels_placeholder) saver = tf.train.Saver() with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir) if ckpt and ckpt.model_checkpoint_path: print('Restoring variables from checkpoint') saver.restore(sess, ckpt.model_checkpoint_path) current_step = tf.train.global_step(sess, global_step) print('Current step: {}'.format(current_step))
beginTime = time.time() data_sets = data_helpers.load_data() images_placeholder = tf.placeholder(tf.float32, shape=[None, IMAGE_PIXELS], name='images') labels_placeholder = tf.placeholder(tf.int64, shape=[None], name='image-labels') logits = two_layer_fc.inference(images_placeholder, IMAGE_PIXELS, FLAGS.hidden1, CLASSES, reg_constant=FLAGS.reg_constant) global_step = tf.Variable(0, name="global_step", trainable=False) accuracy = two_layer_fc.evaluation(logits, labels_placeholder) saver = tf.train.Saver() with tf.Session() as sess: ckpt = tf.train.get_checkpoint_state(FLAGS.train_dir) if ckpt and ckpt.model_checkpoint_path: print('Restoring variables from checkpoint') saver.restore(sess, ckpt.model_checkpoint_path) current_step = tf.train.global_step(sess, global_step)
log_dir = Flags.train_dir + '/' + datetime.now().strftime('%Y%m%d-%H%M%S') + '/' # use strftime function to set the format of expressing date-time according to yourself #Load CIFAR-10 data data_sets = data_helpers.load_data() # prepare tensorflow graph #input placeholders images_placeholder = tf.placeholder(tf.float32,shape=[None,IMAGE_PIXELS]) labels_placeholder = tf.placeholder(tf.int64,shape=[None],name='image-labels') # Operation for classifier's result logits = two_layer_fc.inference(image_placeholder,IMAGE_PIXEL,Flags.hidden1,CLASSES,reg_constant=Flags.reg_constant) # Operation for calculating loss loss = two_layer_fc.loss(logits,labels_placeholder) # Operation for training_step train_step = two_layer_fc.training(loss,Flags.learning_rate) # Operation for calculating accuracy of our predictions accuracy = two_layer_fc.evaluation(logits,labels_placeholder) # used for merging all the summaries at one place summary = tf.summary.merge_all() saver = tf.train.Saver() # use tf.session() to run tensorflow graph. with tf.Session() as sess: sess.run(tf.global_variable_initializer()) summary_writer = tf.summary.FileWriter(logdir,sess.graph)