def fetch(tweet_id: int, index_no: int = 0, cutoff: int = 86400) -> typing.Optional['TweetSauceCache']: """ Attempt to load a cached saucenao lookup Args: tweet_id(int): Tweet ID to look up index_no (int): The media indice for tweets with multiple media uploads cutoff (int): Only retrieve cache entries up to `cutoff` seconds old. (Default is 1-day) Returns: typing.Optional[TweetSauceCache] """ now = int(time.time()) cutoff_ts = 0 if not cutoff else (now - cutoff) sauce = TweetSauceCache.get(tweet_id=tweet_id, index_no=index_no) if sauce: log.debug( f'[SYSTEM] Sauce cache hit on index {index_no} for tweet {tweet_id}' ) if sauce.created_at < cutoff_ts: log.info( f'[SYSTEM] Sauce cache query on index {index_no} for tweet {tweet_id} has expired' ) return None return sauce
def fetch(tweet_id: int) -> typing.Optional['TweetCache']: """ Attempt to retrieve a tweet from our local cache Args: tweet_id(int): Tweet ID to look up Returns: typing.Optional[TweetCache] """ tweet = TweetCache.get(tweet_id=tweet_id) if tweet: log.debug(f'[SYSTEM] Tweet {tweet_id} cache hit') return tweet
def set(tweet: TweetCache, sauce_results: typing.Optional[SauceNaoResults] = None, index_no: int = 0, trigger: str = TRIGGER_MENTION) -> 'TweetSauceCache': """ Cache a SauceNao query Args: tweet (TweetCache): Cached Tweet entry sauce_results (Optional[SauceNaoResults]): Results to filter and process index_no (int): The media indice for tweets with multiple media uploads trigger (str): The event that triggered the sauce lookup (purely for analytics) Returns: TweetSauceCache """ # Delete any existing cache entry. This is just for safety; it shouldn't actually be triggered. cache = TweetSauceCache.get(tweet_id=tweet.tweet_id, index_no=index_no) if cache: log.info( f'[SYSTEM] Overwriting sauce cache entry for tweet {tweet.tweet_id}' ) cache.delete() commit() # If there are no results, we log a cache entry anyways to prevent making additional queries def no_results(): log.info( f'[SYSTEM] Logging a failed Sauce lookup for tweet {tweet.tweet_id} on indice {index_no}' ) _cache = TweetSauceCache(tweet_id=tweet.tweet_id, index_no=index_no, trigger=trigger, created_at=int(time.time())) return _cache if not sauce_results or not sauce_results.results: return no_results() # Get the first result and make sure it meets our minimum similarity requirement similarity_cutoff = int( config.getfloat('Twitter', f"min_similarity_{trigger}", fallback=50.0)) sauce = sauce_results.results[0] # Finally, make sure the sauce result actually meets our minimum similarity requirements if (sauce.similarity < similarity_cutoff): log.debug( f"[SYSTEM] Sauce potentially found for tweet {tweet.tweet_id}, but it didn't meet the minimum {trigger} similarity requirements" ) return no_results() log.info( f'[SYSTEM] Caching a successful sauce lookup query for tweet {tweet.tweet_id} on indice {index_no}' ) cache = TweetSauceCache(tweet_id=tweet.tweet_id, index_no=index_no, sauce_header=sauce.header, sauce_data=sauce.data, sauce_class=type(sauce).__name__, sauce_index=sauce.index, trigger=trigger, created_at=int(time.time())) return cache