Example #1
0
 def _generate_one_batch(self,
                         generator: 'models.GeneratorModel',
                         batcher: Optional[batchers.Batcher] = None,
                         src_batch: batchers.Batch = None,
                         max_src_len: Optional[int] = None,
                         fp: TextIO = None):
     """
 Generate outputs for a single batch and write them to the output file.
 """
     batch_size = len(src_batch)
     src_batches = batcher.pack(src_batch, None)
     src_batch = src_batches[0]
     src_len = src_batch.sent_len()
     if max_src_len is not None and src_len > max_src_len:
         output_txt = "\n".join([NO_DECODING_ATTEMPTED] * batch_size)
         fp.write(f"{output_txt}\n")
     else:
         with utils.ReportOnException({
                 "src": src_batch,
                 "graph": utils.print_cg_conditional
         }):
             tt.reset_graph()
             with torch.no_grad(
             ) if xnmt.backend_torch else utils.dummy_context_mgr():
                 outputs = self.generate_one(generator, src_batch)
             if self.reporter: self._create_sent_report()
             for i in range(len(outputs)):
                 output_txt = outputs[i].sent_str(
                     custom_output_procs=self.post_processor)
                 fp.write(f"{output_txt}\n")
Example #2
0
def del_with_ul(tag: Element, file: TextIO, space_num=0, prefix=None):
    """
    :param file: 文件
    :param prefix: 前缀
    :arg tag 包含ul的标签
    :arg space_num 空格个数控制格式
    tag的格式是
    """
    tag = etree.HTML(
        etree.tostring(tag, encoding="utf-8", pretty_print=True,
                       method="html").decode())
    li = tag.xpath("/html/body/ul/li")
    # 没有li标签
    if not li:
        return
    elif len(li) == 0:
        return
    else:
        for k in li:
            tem_ = k.xpath("./text()")
            if tem_:
                if not prefix:
                    line = " " * space_num + "* " + tem_[0].replace("\n",
                                                                    "") + "\n"
                    file.write(line)
                    # print(" " * space_num, "*", k.xpath("./text()")[0].replace("\n", ""))
                else:
                    line = prefix + " " + " " * space_num + "* " + tem_[
                        0].replace("\n", "") + "\n"
                    file.write(line)
                    # print(prefix, end="")
                    # print(" " * space_num, "*", k.xpath("./text()")[0].replace("\n", ""))
            tem = k.xpath("./ul")
            if tem is not None and len(tem) > 0:
                del_with_ul(tem[0], space_num=space_num + 1, file=file)
Example #3
0
def del_with_code_block(code_type: str, code: str, file: TextIO):
    other = ["vue", "xml", "html", "java"]
    code_ = code
    if code_type in other:
        code_ = code.replace("&lt;", "<").replace("&gt;", ">")
    line = "```" + code_type + "\n" + code_ + "\n```\n"
    file.write(line)
Example #4
0
 def _generate_one_batch(self,
                         generator: 'models.GeneratorModel',
                         batcher: Optional[batchers.Batcher] = None,
                         src_batch: batchers.Batch = None,
                         max_src_len: Optional[int] = None,
                         fp: TextIO = None):
     """
 Generate outputs for a single batch and write them to the output file.
 """
     batch_size = len(src_batch)
     src_batches = batcher.pack(src_batch, None)
     src_batch = src_batches[0]
     src_len = src_batch.sent_len()
     if max_src_len is not None and src_len > max_src_len:
         output_txt = "\n".join([NO_DECODING_ATTEMPTED] * batch_size)
         fp.write(f"{output_txt}\n")
     else:
         with utils.ReportOnException({
                 "src": src_batch,
                 "graph": utils.print_cg_conditional
         }):
             dy.renew_cg(immediate_compute=settings.IMMEDIATE_COMPUTE,
                         check_validity=settings.CHECK_VALIDITY)
             outputs = self.generate_one(generator, src_batch)
             if self.reporter: self._create_sent_report()
             for i in range(len(outputs)):
                 output_txt = outputs[i].sent_str(
                     custom_output_procs=self.post_processor)
                 fp.write(f"{output_txt}\n")
Example #5
0
def write_record_child(f: TextIO, field: bigquery.SchemaField, prefix: str):
    f.write(f'view: {prefix}{field.name} {{\n')
    for fld in field.fields:
        write_field(f, fld)
    f.write('}\n\n')

    for fld in filter(lambda x: x.field_type == 'RECORD', field.fields):
        write_record_child(f, fld, f'{prefix}{field.name}__')
Example #6
0
def del_with_h(line: str, level: int, file: TextIO):
    """
    :arg
    """
    # line_html = etree.HTML(line)
    # line = "".join(line_html.xpath("/html/body//text")).strip()
    # print(line)
    line = "#" * level + " " + line + "\n"
    file.write(line)
Example #7
0
    def save_to_file(self, txt_file: TextIO):
        """
        Given the file output from an open('w') method, writes to the file the data within self
        """
        for row_object in self.row_dict.values():
            txt_file.write(row_object.tabulate())

        txt_file.close()
        logging.debug(
            f'{type(self).__name__} object successfully saved to file')
Example #8
0
def handle_packet(data: T.Union[str, bytes], f: Ti.TextIO):
    if isinstance(data, str):
        print(data)
        f.write(data + "\n")
    else:
        print(
            "unexpected binary data: ",
            data.decode("utf8", errors="ignore"),
            file=sys.stderr,
        )
Example #9
0
    def __write_header(self, file_handle: TextIO) -> None:
        """Write a file header for present settings.

        Arguments:
            file_handle: The open file to write to
        """
        file_handle.write("# {0}\n".format(datetime.now().isoformat()))
        file_handle.write('# {}\n'.format(self._comment))
        file_handle.write("# maximum voltage {0} V\n".format(self._max_voltage))
        file_handle.write("# current limit {0} A\n".format(self._current_limit))
        file_handle.write('# nplc {}\n'.format(self._nplc))
        file_handle.write("Voltage Current\n")
Example #10
0
def del_with_h2(s: str, level: int, file: TextIO):
    """
    :arg
    """
    # line_html = etree.HTML(line)
    # line = "".join(line_html.xpath("/html/body//text")).strip()
    # print(line)
    tem_s_html = etree.HTML(s)
    xpath = "//h{}//text()".format(level)
    tem_s = "".join(tem_s_html.xpath(xpath)).strip()
    tem_s = re.sub("\[.*?\]\(.*?\)", "", tem_s, flags=re.S)
    line = "#" * level + " " + tem_s + "\n"
    file.write(line)
Example #11
0
def _write_disease_tensor_maps(phenos_folder: str, f: TextIO) -> None:
    f.write(f"\n\n#  TensorMaps for MPG disease phenotypes\n")
    disease2tsv = get_disease2tsv(phenos_folder)
    logging.info(f"Got:{len(disease2tsv)} disease TSVs from:{phenos_folder}")
    status = disease_censor_status(disease2tsv, 1000000, 5000000)
    logging.info(f"Got status for all diseases.")
    for d in sorted(list(disease2tsv.keys())):
        total = len(status[d])
        diseased = np.sum(list(status[d].values()))
        factor = int(total / (1 + diseased * 2))
        f.write(
            f"{d} = TensorMap('{d}', Interpretation.CATEGORICAL, storage_type=StorageType.CATEGORICAL_FLAG, path_prefix='categorical', "
            f"channel_map={{'no_{d}':0, '{d}':1}}, loss=weighted_crossentropy([1.0, {factor}], '{d}'))\n",
        )
    logging.info(f"Done writing TensorMaps for diseases.")
Example #12
0
def _write_phecode_tensor_maps(f: TextIO, phecode_csv,
                               db_client: DatabaseClient):
    # phecode_csv = '/home/sam/phecode_definitions1.2.csv'
    total_samples = 500000
    remove_chars = ";.,/()-[]&' "
    phecode2phenos = {}
    with open(phecode_csv, 'r') as my_csv:
        lol = list(csv.reader(my_csv, delimiter=','))
        for row in lol[1:]:
            pheno = row[1].strip().replace("'s", "s")
            for c in remove_chars:
                pheno = pheno.replace(c, '_')
            pheno = pheno.lower().strip('_').replace('___',
                                                     '_').replace('__', '_')
            phecode2phenos['phecode_' + row[0].lstrip('0').strip()] = pheno
    query = f"select disease, count(disease) as total from `broad-ml4cvd.ukbb7089_201904.phecodes_nonzero` GROUP BY disease"
    count_result = db_client.execute(query)
    phecode2counts = {}
    for row in count_result:
        phecode2counts[row['disease']] = float(row['total'])

    f.write(f"\n\n#  TensorMaps for Phecode disease phenotypes\n")
    for k, p in sorted(phecode2phenos.items(), key=operator.itemgetter(1)):
        if k in phecode2counts:
            factor = int(total_samples / (1 + phecode2counts[k]))
            f.write(
                f"{p}_phe = TensorMap('{k}', Interpretation.CATEGORICAL, channel_map={{'no_{p}':0, '{p}':1}}, path_prefix='categorical', "
                f"storage_type=StorageType.CATEGORICAL_FLAG, loss=weighted_crossentropy([1.0, {factor}], '{k.replace('.', '_')}'))\n",
            )

    query = f"select disease, count(disease) as total from `broad-ml4cvd.ukbb7089_201904.phecodes_nonzero` WHERE prevalent_disease=1 GROUP BY disease"
    count_result = db_client.execute(query)
    phecode2prevalent = {}
    for row in count_result:
        phecode2prevalent[row['disease']] = float(row['total'])

    query = f"select disease, count(disease) as total from `broad-ml4cvd.ukbb7089_201904.phecodes_nonzero` WHERE incident_disease=1 GROUP BY disease"
    count_result = db_client.execute(query)
    phecode2incident = {}
    for row in count_result:
        phecode2incident[row['disease']] = float(row['total'])

    f.write(
        f"\n\n#  TensorMaps for prevalent and incident Phecode disease phenotypes\n"
    )
    for k, p in sorted(phecode2phenos.items(), key=operator.itemgetter(1)):
        if k in phecode2incident and k in phecode2prevalent:
            factor_i = int(total_samples / (1 + phecode2incident[k]))
            factor_p = int(total_samples / (1 + phecode2prevalent[k]))
            f.write(
                f"{p}_phe_pi = TensorMap('{k}',  Interpretation.CATEGORICAL,  storage_type=StorageType.CATEGORICAL_FLAG, "
                f"path_prefix='categorical', tensor_from_file=prevalent_incident_tensor('dates/enroll_date', 'dates/{k}_date'), "
                f"channel_map={{'no_{p}':0, '{p}_prevalent':1, '{p}_incident':2}}, "
                f"loss=weighted_crossentropy([1.0, {factor_p}, {factor_i}], '{p}_pi'))\n",
            )
Example #13
0
def write_text_record(stream: TextIO, record: MarcRecord) -> None:
    """
    Сохранение записи в файл в текстовом обменном формате ИРБИС.

    :param stream: Файл
    :param record: Запись
    :return: None
    """

    assert stream
    assert record

    for field in record.fields:
        parts = ['#' + str(field.tag) + ': ' + safe_str(field.value)]
        for subfield in field.subfields:
            parts.extend(str(subfield))
        line = ''.join(parts) + '\n'
        stream.write(line)
    stream.write(STOP_MARKER + '\n')
Example #14
0
    def to_txt(self, f: TextIO, expression_data=None):
        if expression_data is None:
            from copy import copy
            expression_data = copy(self.joined)
        columns = expression_data.columns
        pandas.options.mode.chained_assignment = None
        expression_data['Description'] = 'na'
        expression_data = expression_data[['Description', *columns]]
        if type(expression_data.index[0]) is bytes:
            expression_data.index = [b.decode('utf-8') for b in expression_data.index]
        expression_data.index = expression_data.index.astype(str)
        expression_data.index.name = 'gene'
        header = '\t'.join([expression_data.index.name, *expression_data.columns]) + '\n'
        f.write(header)

        savetxt(
            f,
            expression_data.reset_index().values,
            delimiter='\t',
            # entrez id or symbol (as str), 'na' (not a description, str), *data (floats)
            fmt='%s\t%s' + ('\t%f' * (len(expression_data.columns) - 1))
        )
Example #15
0
def del_with_blockquote(tag: Element, file: TextIO):
    """
    :param file:
    :arg tag 含有blockquote的标签
    """

    children = tag.xpath("/html/body/blockquote/*")
    for i in children:
        sub = etree.tostring(i,
                             encoding="utf-8",
                             pretty_print=True,
                             method="html").decode()
        sub_html = etree.HTML(sub)
        tag_p = sub_html.xpath("/html/body/p")
        if tag_p:
            # line_to_print = "".join(tag_p[0].xpath(".//text()")).replace("\n", "")
            line = ">" + "".join(tag_p[0].xpath(".//text()")).replace(
                "\n", "") + "\n"
            file.write(line)
            # print(">", "".join(tag_p[0].xpath(".//text()")).replace("\n", ""))
        else:
            del_with_ul(sub_html, prefix=">", file=file)
Example #16
0
 def _generate_one_batch(self, generator: 'models.GeneratorModel',
                               batcher: Optional[batchers.Batcher] = None,
                               src_batch: batchers.Batch = None,
                               ref_batch: Optional[batchers.Batch] = None,
                               assert_scores: Optional[List[int]] = None,
                               max_src_len: Optional[int] = None,
                               fp: TextIO = None):
   """
   Generate outputs for a single batch and write them to the output file.
   """
   batch_size = len(src_batch)
   if ref_batch[0] is not None:
     src_batches, ref_batches = batcher.pack(src_batch, ref_batch)
     ref_batch = ref_batches[0]
   else:
     src_batches = batcher.pack(src_batch, None)
     ref_batch = None
   src_batch = src_batches[0]
   src_len = src_batch.sent_len()
   if max_src_len is not None and src_len > max_src_len:
     output_txt = "\n".join([NO_DECODING_ATTEMPTED] * batch_size)
     fp.write(f"{output_txt}\n")
   else:
     with utils.ReportOnException({"src": src_batch, "graph": utils.print_cg_conditional}):
       dy.renew_cg(immediate_compute=settings.IMMEDIATE_COMPUTE, check_validity=settings.CHECK_VALIDITY)
       outputs = self.generate_one(generator, src_batch, ref_batch)
       if self.reporter: self._create_sent_report()
       for i in range(len(outputs)):
         if assert_scores[0] is not None:
           # If debugging forced decoding, make sure it matches
           assert batch_size == len(outputs), "debug forced decoding not supported with nbest inference"
           if (abs(outputs[i].score - assert_scores[i]) / abs(assert_scores[i])) > 1e-5:
             raise ValueError(
               f'Forced decoding score {outputs[i].score} and loss {assert_scores[i]} do not match at '
               f'sentence {i}')
         output_txt = outputs[i].sent_str(custom_output_procs=self.post_processor)
         fp.write(f"{output_txt}\n")
Example #17
0
def _write_disease_tensor_maps_incident_prevalent(phenos_folder: str,
                                                  f: TextIO) -> None:
    f.write(
        f"\n\n#  TensorMaps for prevalent and incident MPG disease phenotypes\n"
    )
    disease2tsv = get_disease2tsv(phenos_folder)
    logging.info(f"Got:{len(disease2tsv)} disease TSVs from:{phenos_folder}")
    status_p = disease_prevalence_status(disease2tsv, 1000000, 2500000)
    status_i = disease_incidence_status(disease2tsv, 1000000, 2500000)
    logging.info(f"Got prevalence and incidence status for all diseases.")
    for disease in sorted(list(disease2tsv.keys())):
        total = len(status_p[disease])
        diseased_p = np.sum(list(status_p[disease].values()))
        factor_p = int(total / (1 + (diseased_p * 3)))
        diseased_i = np.sum(list(status_i[disease].values()))
        factor_i = int(total / (1 + (diseased_i * 3)))
        f.write(
            f"{disease}_prevalent_incident = TensorMap('{disease}', Interpretation.CATEGORICAL,  storage_type=StorageType.CATEGORICAL_FLAG, "
            f"path_prefix='categorical', tensor_from_file=prevalent_incident_tensor('dates/enroll_date', 'dates/{disease}_date'), "
            f"channel_map={{'no_{disease}':0, 'prevalent_{disease}':1, 'incident_{disease}':2}}, "
            f"loss=weighted_crossentropy([1.0, {factor_p}, {factor_i}], '{disease}_prevalent_incident'))\n",
        )
    logging.info(
        f"Done writing TensorMaps for prevalent and incident diseases.")
Example #18
0
def del_with_table(sub: Element, file: TextIO):
    col_num = 0
    col_name = sub.xpath("//thead/tr/th/text()")
    col_num = len(col_name)
    row_head = "| " + " | ".join(col_name) + " |\n"
    file.write(row_head)
    # print(row_head)
    tem_list = "| " + " | ".join([":-----:" for i in range(col_num)]) + " |\n"
    # print(tem_list)
    file.write(tem_list)
    # 解决表体
    trs = sub.xpath("//tbody/tr")
    for tr in trs:
        row = tr.xpath("./td/text()")
        row_each = "| " + " | ".join(row).replace("\n", "") + " |\n"
        file.write(row_each)
Example #19
0
def write_absolute_dir_to_file(dir_name, file: TextIO):
    relative_child_dir = "/".join(
        dir_name.split("/")[settings.init_dir_offset:])

    dir_name = relative_child_dir.split("/")[-1]

    offset = len(relative_child_dir.split("/"))
    whitespace_offset = "    " * (offset - 1)

    if (dir_name in settings.terminal_dir) or (dir_name
                                               in settings.semiterminal_dir):
        if dir_name in settings.external_repo:
            link = "[{}]({})".format(dir_name,
                                     settings.external_repo.get(dir_name))
        else:
            link = "[{}]({})".format(dir_name, relative_child_dir)
        #print("Directory name: {}, Link: {}".format(dir_name, link))
        file.write(whitespace_offset + "* " + link)
    else:
        #print("Directory name: {}, Link: {}".format(dir_name, None))
        file.write(whitespace_offset + "* " + dir_name)
    file.write("\n")
Example #20
0
 def __write_header(self, file_handle: TextIO) -> None:
     file_handle.write("# {0}\n".format(datetime.now().isoformat()))
     file_handle.write('# {}\n'.format(self._comment))
     file_handle.write('# {} Hz\n'.format(self._device.freq))
     file_handle.write('# {} V\n'.format(self._device.slvl))
     file_handle.write('# {} Time constant\n'.format(self._device.oflt))
     file_handle.write("# pre resistance {0} OHM\n".format(
         self._pre_resistance))
     file_handle.write("# sweep rate {0} T/min\n".format(self._sweep_rate))
     file_handle.write(
         "Datetime Field Real Imaginary Amplitude Theta Sensitivity T1 T2 T3\n"
     )
Example #21
0
def hash_files(docs: Iterable[DocFile], out: TextIO):

    out.write('{\n')
    out.write('"generator": "stramp",\n')
    out.write('"documents": [\n')

    first = True
    for doc in docs:

        if doc.file_format == 'org':
            from stramp.parsers.org_parser import load_file as load_org_file
            load_org_file(doc)
        elif doc.file_format in ('commonmark', 'markdown'):
            from stramp.parsers.markdown_parser import load_file as load_markdown_file
            load_markdown_file(doc)
        else:
            raise ValueError(f'Unsupported file format {doc.file_format!r}')

        with io.StringIO() as file_json:  # type: Union[TextIO, io.StringIO]

            write_file_hash_json(doc, file_json)

            if not first:
                out.write(',\n')
            first = False
            out.write(file_json.getvalue())

    out.write(']}\n')
Example #22
0
def analyse_od(model: str, dataset: str, split: str, pivot_file: TextIO):
    """
    TODO
    """
    if split == "kh":
        return

    source_dataset = load_dataset(f"{dataset}.txt")

    label_indices = get_label_indices(source_dataset)

    numeric_labels = list(range(len(label_indices)))
    num_labels = len(numeric_labels)

    split_name = split if split != "kh" else f"kh-{model}"
    split_path = f"{dataset}.strat-0.15.{split_name}.splits"

    holdout_dataset = load_dataset(os.path.join(split_path, "holdout.txt"))

    schedule_dataset = load_dataset(os.path.join(split_path, "schedule.txt"))

    y_true = [label_indices[label] for label in holdout_dataset.values()]

    splitter = TopNSplitter(50)

    iteration = 0
    cumulative_corrections = 0
    _, remaining_dataset = splitter(schedule_dataset)
    while True:
        holdout_predictions_path = os.path.join(
            split_path, f"{model}/{iteration}/predictions")

        if not os.path.exists(holdout_predictions_path):
            break

        holdout_predictions = load_rois_predictions(holdout_predictions_path,
                                                    holdout_dataset,
                                                    num_labels)

        y_score = list(holdout_predictions.values())

        y_score = [
            coerce_incorrect(num_labels, truth, prediction)
            for truth, prediction in zip(y_true, y_score)
        ]

        top_1 = top_k_accuracy_score(y_true,
                                     y_score,
                                     k=1,
                                     labels=numeric_labels,
                                     normalize=True)

        pivot_file.write(",".join(
            map(str, [
                model, dataset, split, iteration, "holdout", "accuracy", top_1
            ])) + "\n")

        update_dataset, remaining_dataset = splitter(remaining_dataset)

        update_predictions_path = os.path.join(
            split_path, f"{model}/{iteration}/update_predictions")

        if os.path.exists(update_predictions_path):
            update_y_true = [
                label_indices[label] for label in update_dataset.values()
            ]
            update_predictions = load_rois_predictions(update_predictions_path,
                                                       update_dataset,
                                                       num_labels)
            update_y_score = list(update_predictions.values())
            update_y_score = [
                coerce_incorrect(num_labels, truth, prediction)
                for truth, prediction in zip(update_y_true, update_y_score)
            ]
            update_top_1 = top_k_accuracy_score(update_y_true,
                                                update_y_score,
                                                k=1,
                                                labels=numeric_labels,
                                                normalize=True)
            pivot_file.write(",".join(
                map(str, [
                    model, dataset, split, iteration, "update", "accuracy",
                    update_top_1
                ])) + "\n")
            cumulative_corrections += int((1 - update_top_1) * 50)
            pivot_file.write(",".join(
                map(str, [
                    model, dataset, split, iteration, "update",
                    "cumulative_corrections", cumulative_corrections
                ])) + "\n")

        iteration += 1
Example #23
0
 def __write_header(self, file_handle: TextIO) -> None:
     file_handle.write("# {0}\n".format(datetime.now().isoformat()))
     file_handle.write('# {}\n'.format(self._comment))
     file_handle.write('# {} V\n'.format(self._voltage))      
     file_handle.write('# {} A-max\n'.format(self._current_limit))  
     file_handle.write("# sweep rate {0} K/min\n".format(self._sweep_rate))
     file_handle.write("Datetime Voltage Current T1 T2 T3\n")
Example #24
0
def write_look_ml(f: TextIO, info: TableInfo):
    # write view
    f.write(f'view: {info.dataset_id}__{info.clear_name} {{\n')
    f.write(
        f'  sql_table_name: `{info.project_id}.{info.dataset_id}.{info.clear_name}'
    )
    if info.is_sharding():
        f.write('_*')
    f.write('`\n    ;;\n\n')

    for field in info.schema:
        write_field(f, field)

    # measure count
    f.write('  measure: count {\n')
    f.write('    type: count\n')

    drill_fields: List[str] = []
    if 'id' in [field.name for field in info.schema]:
        drill_fields.append('id')
    if 'name' in [field.name for field in info.schema]:
        drill_fields.append('name')

    f.write(f'    drill_fields: [{", ".join(drill_fields)}]\n')
    f.write('  }\n')
    f.write('}\n\n')

    for field in filter(lambda x: x.field_type == 'RECORD', info.schema):
        write_record_child(f,
                           field,
                           prefix=f'{info.dataset_id}__{info.clear_name}__')
Example #25
0
def del_with_p(data, file: TextIO):
    line = "".join(data[0].xpath(".//text()")).replace("\n", "") + "\n"
    file.write(line)
Example #26
0
 def to_gct(self, f: TextIO, tabular_writer='to_txt'):
     f.write('#1.2\n')
     expression_data = self.joined
     assert expression_data.notnull().all().all()
     f.write(f'{len(expression_data)}\t{len(expression_data.columns)}\n')
     getattr(self, tabular_writer)(f, expression_data)
Example #27
0
def write_field(f: TextIO, field: bigquery.SchemaField):
    if field.field_type in ['TIME', 'TIMESTAMP', 'DATE', 'DATETIME']:
        f.write(f'  dimension_group: {field.name} {{\n')
    else:
        f.write(f'  dimension: {field.name} {{\n')
        if field.name == 'id':
            f.write('    primary_key: yes\n')

    if field.field_type in ['INTEGER', 'FLOAT', 'NUMERIC']:
        f.write('    type: number\n')
    elif field.field_type == 'BOOLEAN':
        f.write('    type: yesno\n')
    elif field.field_type in ['TIME', 'TIMESTAMP', 'DATE', 'DATETIME']:
        f.write('    type: time\n')
        f.write('    timeframes: [\n')
        f.write('      raw,\n')
        if field.field_type != 'DATE':
            f.write('      time,\n')
        f.write('      date,\n')
        f.write('      week,\n')
        f.write('      month,\n')
        f.write('      quarter,\n')
        f.write('      year\n')
        f.write('    ]\n')
        if field.field_type == 'DATE':
            f.write('    convert_tz: no\n')
            f.write('    datatype: date\n')
    elif field.field_type == 'RECORD':
        f.write('    hidden: yes\n')
    else:
        f.write('    type: string\n')

    f.write(f'    sql: ${{TABLE}}.{field.name} ;;\n')
    f.write('  }\n\n')
 def write_svg(self, f: TextIO):
     f.write(f'<{self.diagram_item.name}')
     for name, value in sorted(self.diagram_item.attrs.items()):
         f.write(f' {name}="{e(value)}"')
     f.write(f' data-dbg-cls="{self.diagram_item.__class__.__name__}"'
             f' data-dbg-w="{self.diagram_item.width}"')
     f.write('>')
     for child in self.children:
         if isinstance(child, FormattedItem):
             child.write_svg(f)
         else:
             f.write(e(child))
     f.write(f'</{self.diagram_item.name}>')
Example #29
0
    def save_history_for_conversation(self,f : TextIO,id : int = 0):

        self.update_status_history_for_conversation(id)
        dump(self.status_per_conversation[id],f)
        f.write('\n')
Example #30
0
    def format(self, f: TextIO) -> None:
        width: List[int] = []
        columns: List[str] = []
        rows: List[List[str]] = []

        for column in self.row_set.columns():
            name = str(column.name)
            columns.append(name)
            width.append(len(name))

        for row in self.row_set.iter():
            expressions: List[str] = []

            for (column, cell) in zip(self.row_set.columns(), row.data):
                expr: ExpressionLiteral = column.ty.construct(cell)
                sql = expr.to_sql()
                expressions.append(sql)

            rows.append(expressions)

        for row in rows:
            for (i, cell) in enumerate(row):
                width[i] = max(len(cell), width[i])

        f.write(' ')  # shift to the right for the sliding effect
        f.write(
            self.separator.join(c.center(w) for (c, w) in zip(columns, width)))
        f.write(os.linesep)
        f.write(self.separator.join(''.ljust(w, '/') for w in width))
        f.write(os.linesep)

        for row in rows:
            f.write(
                self.separator.join(c.ljust(w) for (c, w) in zip(row, width)))
            f.write(os.linesep)