Example #1
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--method', type=str, default='mean')
    parser.add_argument('--level', type=int, default=0)
    parser.add_argument('--seed', type=int, default=0)
    parser.add_argument('--log_dir', type=str, default='0')
    subparsers = parser.add_subparsers()
    add_uci_subparser(subparsers)
    add_mc_subparser(subparsers)
    args = parser.parse_args()
    print(args)

    seed = args.seed
    np.random.seed(seed)
    torch.manual_seed(seed)

    if args.domain == 'uci':
        from uci.uci_data import load_data
        data = load_data(args)
    elif args.domain == 'mc':
        from mc.mc_data import load_data
        data = load_data(args)

    log_path = './{}/test/{}/{}_{}/'.format(args.domain, args.data,
                                            args.method, args.log_dir)
    os.makedirs(log_path)

    cmd_input = 'python ' + ' '.join(sys.argv) + '\n'
    with open(osp.join(log_path, 'cmd_input.txt'), 'a') as f:
        f.write(cmd_input)

    baseline_mdi(data, args, log_path)
Example #2
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--domain', type=str, default='uci') # 'uci'
    parser.add_argument('--data', type=str, default='housing')  # 'pks', 'cancer', 'housing', 'wine'
    parser.add_argument('--method', type=str, default='mean')
    parser.add_argument('--train_edge', type=float, default=0.7)
    parser.add_argument('--train_y', type=float, default=0.7)
    parser.add_argument('--log_dir', type=str, default='lry0')
    parser.add_argument('--load_dir', type=str, default='0')
    parser.add_argument('--seed', type=int, default=0)
    args = parser.parse_args()

    seed = args.seed
    np.random.seed(seed)
    torch.manual_seed(seed)

    if args.domain == 'uci':
        from uci.uci_data import load_data
        data = load_data(args)

    log_path = './{}/test/{}/{}_{}/'.format(args.domain,args.data,args.method,args.log_dir)
    os.mkdir(log_path)

    cmd_input = 'python ' + ' '.join(sys.argv) + '\n'
    with open(osp.join(log_path, 'cmd_input.txt'), 'a') as f:
        f.write(cmd_input)
        
    load_path = './{}/test/{}/{}/'.format(args.domain,args.data,args.load_dir)
    linear_regression(data, args, log_path, load_path)
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--domain', type=str, default='uci')
    parser.add_argument('--data', type=str, default='housing')
    parser.add_argument('--train_edge', type=float, default=0.7)
    parser.add_argument('--split_sample', type=float, default=0.)
    parser.add_argument('--split_by', type=str, default='y')  # 'y', 'random'
    parser.add_argument('--split_train', action='store_true', default=False)
    parser.add_argument('--split_test', action='store_true', default=False)
    parser.add_argument('--train_y', type=float, default=0.7)
    parser.add_argument(
        '--node_mode', type=int,
        default=0)  # 0: feature onehot, sample all 1; 1: all onehot

    parser.add_argument('--method', type=str, default=None)
    parser.add_argument('--level', type=int, default=0)
    parser.add_argument('--seed', type=int, default=0)

    parser.add_argument('--best_level', action='store_true', default=False)
    parser.add_argument('--comment', type=str, default='v1')
    args = parser.parse_args()
    # device is cpu by default

    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    best_levels = {'mean': 0, 'knn': 2, 'svd': 2, 'mice': 0, 'spectral': 1}

    ## new
    for args.data in [
            'concrete', 'energy', 'housing', 'kin8nm', 'naval', 'power',
            'protein', 'wine', 'yacht'
    ]:
        for args.method in [
                'gnn', 'gnn_mdi', 'mean', 'knn', 'svd', 'mice', 'spectral'
        ]:
            data = load_data(args)
            if args.best_level and (not args.method.startswith('gnn')):
                args.level = best_levels[args.method]
                print("using best level {} for {}".format(
                    args.level, args.method))
            log_path = './uci/y_results/results/{}_{}/{}/{}/'.format(
                args.method, args.comment, args.data, args.seed)
            if not os.path.isdir(log_path):
                os.makedirs(log_path)
            if args.method == 'gnn':
                load_path = './uci/y_results/results/gnn_{}/{}/{}/'.format(
                    args.comment, args.data, args.seed)
            elif args.method == 'gnn_mdi':
                load_path = './uci/mdi_results/results/gnn_mdi_{}/{}/{}/'.format(
                    args.comment, args.data, args.seed)
            else:
                load_path = ''
            linear_regression(data, args, log_path, load_path)
Example #4
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--domain', type=str, default='uci')
    parser.add_argument('--data', type=str, default=None)
    parser.add_argument('--train_edge', type=float, default=0.7)
    parser.add_argument('--train_y', type=float, default=0.7)
    parser.add_argument(
        '--node_mode', type=int,
        default=0)  # 0: feature node onehot, sample node all 1; 1: all onehot

    parser.add_argument('--model_types', type=str, default='EGSAGE_EGSAGE')
    parser.add_argument(
        '--post_hiddens',
        type=str,
        default=None,
    )  # default to be 1 hidden of node_dim
    parser.add_argument('--concat_states', action='store_true', default=False)
    parser.add_argument(
        '--norm_embs',
        type=str,
        default=None,
    )  # default to be all true
    parser.add_argument(
        '--aggr',
        type=str,
        default='mean',
    )
    parser.add_argument('--node_dim', type=int, default=16)
    parser.add_argument('--edge_dim', type=int, default=16)
    parser.add_argument('--edge_mode', type=int,
                        default=1)  # 0: use it as weight 1: as input to mlp
    parser.add_argument('--gnn_activation', type=str, default='relu')
    parser.add_argument('--impute_hiddens', type=str, default='')
    parser.add_argument('--impute_activation', type=str, default='relu')
    parser.add_argument('--predict_hiddens', type=str, default='')
    parser.add_argument('--epochs', type=int, default=20000)
    parser.add_argument('--opt', type=str, default='adam')
    parser.add_argument('--opt_scheduler', type=str, default='none')
    parser.add_argument('--opt_restart', type=int, default=0)
    parser.add_argument('--opt_decay_step', type=int, default=1000)
    parser.add_argument('--opt_decay_rate', type=float, default=0.9)
    parser.add_argument('--dropout', type=float, default=0.)
    parser.add_argument('--weight_decay', type=float, default=0.)
    parser.add_argument('--lr', type=float, default=0.001)
    parser.add_argument('--known', type=float,
                        default=0.7)  # 1 - edge dropout rate
    parser.add_argument('--valid', type=float, default=0.)  # valid-set ratio
    parser.add_argument('--seed', type=int, default=0)
    parser.add_argument('--comment', type=str, default='v1')
    args = parser.parse_args()
    print(args)

    # select device
    if torch.cuda.is_available():
        cuda = auto_select_gpu()
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
        os.environ['CUDA_VISIBLE_DEVICES'] = str(cuda)
        print('Using GPU {}'.format(os.environ['CUDA_VISIBLE_DEVICES']))
        device = torch.device('cuda:{}'.format(cuda))
    else:
        print('Using CPU')
        device = torch.device('cpu')

    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    ## new
    for args.data in [
            'concrete', 'energy', 'housing', 'kin8nm', 'naval', 'power',
            'protein', 'wine', 'yacht'
    ]:
        data = load_data(args)

        log_path = './uci/y_results/results/gnn_{}/{}/{}/'.format(
            args.comment, args.data, args.seed)

        if not os.path.isdir(log_path):
            os.makedirs(log_path)

        # if os.path.isdir(log_path):
        #     if len(os.listdir(log_path))>0:
        #         print('Directory exists, skip training')
        #         continue
        #     else:
        #         print('Directory exists, no content, re-initialize training')
        #         shutil.rmtree(log_path)

        train_gnn_y(data, args, log_path, device)
Example #5
0
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0)
subparsers = parser.add_subparsers()
add_uci_subparser(subparsers)
add_mc_subparser(subparsers)
args = parser.parse_args()
print(args)

seed = args.seed
np.random.seed(seed)
torch.manual_seed(seed)

if args.domain == 'uci':
    from uci.uci_data import load_data
    data = load_data(args)
elif args.domain == 'mc':
    from mc.mc_data import load_data
    data = load_data(args)

# print(data)
print('node dim: ', data.num_node_features, ' edge dim: ', data.edge_attr_dim)
for i, key in enumerate(data.keys):
    if torch.is_tensor(data[key]):
        print(key, ': ', data[key].shape)
    # else:
    # 	print(key,': ',data[key])

if hasattr(args, 'split_sample') and args.split_sample > 0.:
    lower_y = data.y[data.lower_y_index]
    higher_y = data.y[data.higher_y_index]
Example #6
0
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_types',
                        type=str,
                        default='EGSAGE_EGSAGE_EGSAGE')
    parser.add_argument(
        '--post_hiddens',
        type=str,
        default=None,
    )  # default to be 1 hidden of node_dim
    parser.add_argument('--concat_states', action='store_true', default=False)
    parser.add_argument(
        '--norm_embs',
        type=str,
        default=None,
    )  # default to be all true
    parser.add_argument(
        '--aggr',
        type=str,
        default='mean',
    )
    parser.add_argument('--node_dim', type=int, default=64)
    parser.add_argument('--edge_dim', type=int, default=64)
    parser.add_argument('--edge_mode', type=int,
                        default=1)  # 0: use it as weight; 1: as input to mlp
    parser.add_argument('--gnn_activation', type=str, default='relu')
    parser.add_argument('--impute_hiddens', type=str, default='64')
    parser.add_argument('--impute_activation', type=str, default='relu')
    parser.add_argument('--epochs', type=int, default=20000)
    parser.add_argument('--opt', type=str, default='adam')
    parser.add_argument('--opt_scheduler', type=str, default='none')
    parser.add_argument('--opt_restart', type=int, default=0)
    parser.add_argument('--opt_decay_step', type=int, default=1000)
    parser.add_argument('--opt_decay_rate', type=float, default=0.9)
    parser.add_argument('--dropout', type=float, default=0.)
    parser.add_argument('--weight_decay', type=float, default=0.)
    parser.add_argument('--lr', type=float, default=0.001)
    parser.add_argument('--known', type=float,
                        default=0.7)  # 1 - edge dropout rate
    parser.add_argument('--auto_known', action='store_true', default=False)
    parser.add_argument(
        '--loss_mode', type=int, default=0
    )  # 0: loss on all train edge, 1: loss only on unknown train edge
    parser.add_argument('--valid', type=float, default=0.)  # valid-set ratio
    parser.add_argument('--seed', type=int, default=0)
    parser.add_argument('--log_dir', type=str, default='0')
    parser.add_argument('--save_model', action='store_true', default=False)
    parser.add_argument('--save_prediction',
                        action='store_true',
                        default=False)
    parser.add_argument('--transfer_dir', type=str, default=None)
    parser.add_argument('--transfer_extra', type=str, default='')
    parser.add_argument('--mode', type=str, default='train')  # debug
    subparsers = parser.add_subparsers()
    add_uci_subparser(subparsers)
    add_mc_subparser(subparsers)
    args = parser.parse_args()
    print(args)

    # select device
    if torch.cuda.is_available():
        cuda = auto_select_gpu()
        os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
        os.environ['CUDA_VISIBLE_DEVICES'] = str(cuda)
        print('Using GPU {}'.format(os.environ['CUDA_VISIBLE_DEVICES']))
        device = torch.device('cuda:{}'.format(cuda))
    else:
        print('Using CPU')
        device = torch.device('cpu')

    seed = args.seed
    np.random.seed(seed)
    torch.manual_seed(seed)

    if args.domain == 'uci':
        from uci.uci_data import load_data
        data = load_data(args)
    elif args.domain == 'mc':
        from mc.mc_data import load_data
        data = load_data(args)

    log_path = './{}/test/{}/{}/'.format(args.domain, args.data, args.log_dir)
    os.makedirs(log_path)

    cmd_input = 'python ' + ' '.join(sys.argv) + '\n'
    with open(osp.join(log_path, 'cmd_input.txt'), 'a') as f:
        f.write(cmd_input)

    train_gnn_mdi(data, args, log_path, device)