def test_latex_formatting_of_cmath(): x = ufl.SpatialCoordinate(ufl.triangle)[0] assert expr2latex(ufl.exp(x)) == r"e^{x_0}" assert expr2latex(ufl.ln(x)) == r"\ln(x_0)" assert expr2latex(ufl.sqrt(x)) == r"\sqrt{x_0}" assert expr2latex(abs(x)) == r"\|x_0\|" assert expr2latex(ufl.sin(x)) == r"\sin(x_0)" assert expr2latex(ufl.cos(x)) == r"\cos(x_0)" assert expr2latex(ufl.tan(x)) == r"\tan(x_0)" assert expr2latex(ufl.asin(x)) == r"\arcsin(x_0)" assert expr2latex(ufl.acos(x)) == r"\arccos(x_0)" assert expr2latex(ufl.atan(x)) == r"\arctan(x_0)"
def test_cpp_formatting_of_cmath(): x, y = ufl.SpatialCoordinate(ufl.triangle) # Test cmath functions assert expr2cpp(ufl.exp(x)) == "exp(x[0])" assert expr2cpp(ufl.ln(x)) == "log(x[0])" assert expr2cpp(ufl.sqrt(x)) == "sqrt(x[0])" assert expr2cpp(abs(x)) == "fabs(x[0])" assert expr2cpp(ufl.sin(x)) == "sin(x[0])" assert expr2cpp(ufl.cos(x)) == "cos(x[0])" assert expr2cpp(ufl.tan(x)) == "tan(x[0])" assert expr2cpp(ufl.asin(x)) == "asin(x[0])" assert expr2cpp(ufl.acos(x)) == "acos(x[0])" assert expr2cpp(ufl.atan(x)) == "atan(x[0])"
def test_cpp_formatting_precedence_handling(): x, y = ufl.SpatialCoordinate(ufl.triangle) # Test precedence handling with sums # Note that the automatic sorting is reflected in formatting! assert expr2cpp(y + (2 + x)) == "x[1] + (2 + x[0])" assert expr2cpp((x + 2) + y) == "x[1] + (2 + x[0])" assert expr2cpp((2 + x) + (3 + y)) == "(2 + x[0]) + (3 + x[1])" assert expr2cpp((x + 3) + 2 + y) == "x[1] + (2 + (3 + x[0]))" assert expr2cpp(2 + (x + 3) + y) == "x[1] + (2 + (3 + x[0]))" assert expr2cpp(2 + (3 + x) + y) == "x[1] + (2 + (3 + x[0]))" assert expr2cpp(y + (2 + (3 + x))) == "x[1] + (2 + (3 + x[0]))" assert expr2cpp(2 + x + 3 + y) == "x[1] + (3 + (2 + x[0]))" assert expr2cpp(2 + x + 3 + y) == "x[1] + (3 + (2 + x[0]))" # Test precedence handling with divisions # This is more stable than sums since there is no sorting. assert expr2cpp((x / 2) / 3) == "(x[0] / 2) / 3" assert expr2cpp(x / (y / 3)) == "x[0] / (x[1] / 3)" assert expr2cpp((x / 2) / (y / 3)) == "(x[0] / 2) / (x[1] / 3)" assert expr2cpp(x / (2 / y) / 3) == "(x[0] / (2 / x[1])) / 3" # Test precedence handling with highest level types assert expr2cpp(ufl.sin(x)) == "sin(x[0])" assert expr2cpp(ufl.cos(x + 2)) == "cos(2 + x[0])" assert expr2cpp(ufl.tan(x / 2)) == "tan(x[0] / 2)" assert expr2cpp(ufl.acos(x + 3 * y)) == "acos(x[0] + 3 * x[1])" assert expr2cpp(ufl.asin(ufl.atan(x**4))) == "asin(atan(pow(x[0], 4)))" assert expr2cpp(ufl.sin(y) + ufl.tan(x)) == "sin(x[1]) + tan(x[0])" # Test precedence handling with mixed types assert expr2cpp(3 * (2 + x)) == "3 * (2 + x[0])" assert expr2cpp((2 * x) + (3 * y)) == "2 * x[0] + 3 * x[1]" assert expr2cpp(2 * (x + 3) * y) == "x[1] * (2 * (3 + x[0]))" assert expr2cpp(2 * (x + 3)**4 * y) == "x[1] * (2 * pow(3 + x[0], 4))"
def test_latex_formatting_precedence_handling(): x, y = ufl.SpatialCoordinate(ufl.triangle) # Test precedence handling with sums # Note that the automatic sorting is reflected in formatting! assert expr2latex(y + (2 + x)) == "x_1 + (2 + x_0)" assert expr2latex((x + 2) + y) == "x_1 + (2 + x_0)" assert expr2latex((2 + x) + (3 + y)) == "(2 + x_0) + (3 + x_1)" assert expr2latex((x + 3) + 2 + y) == "x_1 + (2 + (3 + x_0))" assert expr2latex(2 + (x + 3) + y) == "x_1 + (2 + (3 + x_0))" assert expr2latex(2 + (3 + x) + y) == "x_1 + (2 + (3 + x_0))" assert expr2latex(y + (2 + (3 + x))) == "x_1 + (2 + (3 + x_0))" assert expr2latex(2 + x + 3 + y) == "x_1 + (3 + (2 + x_0))" assert expr2latex(2 + x + 3 + y) == "x_1 + (3 + (2 + x_0))" # Test precedence handling with divisions # This is more stable than sums since there is no sorting. assert expr2latex((x / 2) / 3) == r"\frac{(\frac{x_0}{2})}{3}" assert expr2latex(x / (y / 3)) == r"\frac{x_0}{(\frac{x_1}{3})}" assert expr2latex((x / 2) / (y / 3)) == r"\frac{(\frac{x_0}{2})}{(\frac{x_1}{3})}" assert expr2latex(x / (2 / y) / 3) == r"\frac{(\frac{x_0}{(\frac{2}{x_1})})}{3}" # Test precedence handling with highest level types assert expr2latex(ufl.sin(x)) == r"\sin(x_0)" assert expr2latex(ufl.cos(x + 2)) == r"\cos(2 + x_0)" assert expr2latex(ufl.tan(x / 2)) == r"\tan(\frac{x_0}{2})" assert expr2latex(ufl.acos(x + 3 * y)) == r"\arccos(x_0 + 3 x_1)" assert expr2latex(ufl.asin(ufl.atan(x**4))) == r"\arcsin(\arctan({x_0}^{4}))" assert expr2latex(ufl.sin(y) + ufl.tan(x)) == r"\sin(x_1) + \tan(x_0)" # Test precedence handling with mixed types assert expr2latex(3 * (2 + x)) == "3 (2 + x_0)" assert expr2latex((2 * x) + (3 * y)) == "2 x_0 + 3 x_1" assert expr2latex(2 * (x + 3) * y) == "x_1 (2 (3 + x_0))"
def test_diff_then_integrate(): # Define 1D geometry n = 21 mesh = UnitIntervalMesh(MPI.comm_world, n) # Shift and scale mesh x0, x1 = 1.5, 3.14 mesh.coordinates()[:] *= (x1 - x0) mesh.coordinates()[:] += x0 x = SpatialCoordinate(mesh)[0] xs = 0.1 + 0.8 * x / x1 # scaled to be within [0.1,0.9] # Define list of expressions to test, and configure # accuracies these expressions are known to pass with. # The reason some functions are less accurately integrated is # likely that the default choice of quadrature rule is not perfect F_list = [] def reg(exprs, acc=10): for expr in exprs: F_list.append((expr, acc)) # FIXME: 0*dx and 1*dx fails in the ufl-ffc-jit framework somewhere # reg([Constant(0.0, cell=cell)]) # reg([Constant(1.0, cell=cell)]) monomial_list = [x**q for q in range(2, 6)] reg(monomial_list) reg([2.3 * p + 4.5 * q for p in monomial_list for q in monomial_list]) reg([x**x]) reg([x**(x**2)], 8) reg([x**(x**3)], 6) reg([x**(x**4)], 2) # Special functions: reg([atan(xs)], 8) reg([sin(x), cos(x), exp(x)], 5) reg([ln(xs), pow(x, 2.7), pow(2.7, x)], 3) reg([asin(xs), acos(xs)], 1) reg([tan(xs)], 7) try: import scipy except ImportError: scipy = None if hasattr(math, 'erf') or scipy is not None: reg([erf(xs)]) else: print( "Warning: skipping test of erf, old python version and no scipy.") # if 0: # print("Warning: skipping tests of bessel functions, doesn't build on all platforms.") # elif scipy is None: # print("Warning: skipping tests of bessel functions, missing scipy.") # else: # for nu in (0, 1, 2): # # Many of these are possibly more accurately integrated, # # but 4 covers all and is sufficient for this test # reg([bessel_J(nu, xs), bessel_Y(nu, xs), bessel_I(nu, xs), bessel_K(nu, xs)], 4) # To handle tensor algebra, make an x dependent input tensor # xx and square all expressions def reg2(exprs, acc=10): for expr in exprs: F_list.append((inner(expr, expr), acc)) xx = as_matrix([[2 * x**2, 3 * x**3], [11 * x**5, 7 * x**4]]) x3v = as_vector([3 * x**2, 5 * x**3, 7 * x**4]) cc = as_matrix([[2, 3], [4, 5]]) reg2([xx]) reg2([x3v]) reg2([cross(3 * x3v, as_vector([-x3v[1], x3v[0], x3v[2]]))]) reg2([xx.T]) reg2([tr(xx)]) reg2([det(xx)]) reg2([dot(xx, 0.1 * xx)]) reg2([outer(xx, xx.T)]) reg2([dev(xx)]) reg2([sym(xx)]) reg2([skew(xx)]) reg2([elem_mult(7 * xx, cc)]) reg2([elem_div(7 * xx, xx + cc)]) reg2([elem_pow(1e-3 * xx, 1e-3 * cc)]) reg2([elem_pow(1e-3 * cc, 1e-3 * xx)]) reg2([elem_op(lambda z: sin(z) + 2, 0.03 * xx)], 2) # pretty inaccurate... # FIXME: Add tests for all UFL operators: # These cause discontinuities and may be harder to test in the # above fashion: # 'inv', 'cofac', # 'eq', 'ne', 'le', 'ge', 'lt', 'gt', 'And', 'Or', 'Not', # 'conditional', 'sign', # 'jump', 'avg', # 'LiftingFunction', 'LiftingOperator', # FIXME: Test other derivatives: (but algorithms for operator # derivatives are the same!): # 'variable', 'diff', # 'Dx', 'grad', 'div', 'curl', 'rot', 'Dn', 'exterior_derivative', # Run through all operators defined above and compare integrals debug = 0 for F, acc in F_list: # Apply UFL differentiation f = diff(F, SpatialCoordinate(mesh))[..., 0] if debug: print(F) print(x) print(f) # Apply integration with DOLFIN # (also passes through form compilation and jit) M = f * dx f_integral = assemble_scalar(M) # noqa f_integral = MPI.sum(mesh.mpi_comm(), f_integral) # Compute integral of f manually from anti-derivative F # (passes through PyDOLFIN interface and uses UFL evaluation) F_diff = F((x1, )) - F((x0, )) # Compare results. Using custom relative delta instead # of decimal digits here because some numbers are >> 1. delta = min(abs(f_integral), abs(F_diff)) * 10**-acc assert f_integral - F_diff <= delta
def test_div_grad_then_integrate_over_cells_and_boundary(): # Define 2D geometry n = 10 mesh = RectangleMesh(Point(0.0, 0.0), Point(2.0, 3.0), 2 * n, 3 * n) x, y = SpatialCoordinate(mesh) xs = 0.1 + 0.8 * x / 2 # scaled to be within [0.1,0.9] # ys = 0.1 + 0.8 * y / 3 # scaled to be within [0.1,0.9] n = FacetNormal(mesh) # Define list of expressions to test, and configure accuracies # these expressions are known to pass with. The reason some # functions are less accurately integrated is likely that the # default choice of quadrature rule is not perfect F_list = [] def reg(exprs, acc=10): for expr in exprs: F_list.append((expr, acc)) # FIXME: 0*dx and 1*dx fails in the ufl-ffc-jit framework somewhere # reg([Constant(0.0, cell=cell)]) # reg([Constant(1.0, cell=cell)]) monomial_list = [x**q for q in range(2, 6)] reg(monomial_list) reg([2.3 * p + 4.5 * q for p in monomial_list for q in monomial_list]) reg([xs**xs]) reg( [xs**(xs**2)], 8 ) # Note: Accuracies here are from 1D case, not checked against 2D results. reg([xs**(xs**3)], 6) reg([xs**(xs**4)], 2) # Special functions: reg([atan(xs)], 8) reg([sin(x), cos(x), exp(x)], 5) reg([ln(xs), pow(x, 2.7), pow(2.7, x)], 3) reg([asin(xs), acos(xs)], 1) reg([tan(xs)], 7) # To handle tensor algebra, make an x dependent input tensor # xx and square all expressions def reg2(exprs, acc=10): for expr in exprs: F_list.append((inner(expr, expr), acc)) xx = as_matrix([[2 * x**2, 3 * x**3], [11 * x**5, 7 * x**4]]) xxs = as_matrix([[2 * xs**2, 3 * xs**3], [11 * xs**5, 7 * xs**4]]) x3v = as_vector([3 * x**2, 5 * x**3, 7 * x**4]) cc = as_matrix([[2, 3], [4, 5]]) reg2( [xx] ) # TODO: Make unit test for UFL from this, results in listtensor with free indices reg2([x3v]) reg2([cross(3 * x3v, as_vector([-x3v[1], x3v[0], x3v[2]]))]) reg2([xx.T]) reg2([tr(xx)]) reg2([det(xx)]) reg2([dot(xx, 0.1 * xx)]) reg2([outer(xx, xx.T)]) reg2([dev(xx)]) reg2([sym(xx)]) reg2([skew(xx)]) reg2([elem_mult(7 * xx, cc)]) reg2([elem_div(7 * xx, xx + cc)]) reg2([elem_pow(1e-3 * xxs, 1e-3 * cc)]) reg2([elem_pow(1e-3 * cc, 1e-3 * xx)]) reg2([elem_op(lambda z: sin(z) + 2, 0.03 * xx)], 2) # pretty inaccurate... # FIXME: Add tests for all UFL operators: # These cause discontinuities and may be harder to test in the # above fashion: # 'inv', 'cofac', # 'eq', 'ne', 'le', 'ge', 'lt', 'gt', 'And', 'Or', 'Not', # 'conditional', 'sign', # 'jump', 'avg', # 'LiftingFunction', 'LiftingOperator', # FIXME: Test other derivatives: (but algorithms for operator # derivatives are the same!): # 'variable', 'diff', # 'Dx', 'grad', 'div', 'curl', 'rot', 'Dn', 'exterior_derivative', # Run through all operators defined above and compare integrals debug = 0 if debug: F_list = F_list[1:] for F, acc in F_list: if debug: print('\n', "F:", str(F)) # Integrate over domain and its boundary int_dx = assemble(div(grad(F)) * dx(mesh)) # noqa int_ds = assemble(dot(grad(F), n) * ds(mesh)) # noqa if debug: print(int_dx, int_ds) # Compare results. Using custom relative delta instead of # decimal digits here because some numbers are >> 1. delta = min(abs(int_dx), abs(int_ds)) * 10**-acc assert int_dx - int_ds <= delta
def test_dolfin_expression_compilation_of_math_functions(dolfin): # Define some PyDOLFIN coefficients mesh = dolfin.UnitSquareMesh(3, 3) # Using quadratic element deliberately for accuracy V = dolfin.FunctionSpace(mesh, "CG", 2) u = dolfin.Function(V) u.interpolate(dolfin.Expression("x[0]*x[1]")) w0 = u # Define ufl expression with math functions v = abs(ufl.cos(u))/2 + 0.02 uexpr = ufl.sin(u) + ufl.tan(v) + ufl.exp(u) + ufl.ln(v) + ufl.atan(v) + ufl.acos(v) + ufl.asin(v) #print dolfin.assemble(uexpr**2*dolfin.dx, mesh=mesh) # 11.7846508409 # Define expected output from compilation ucode = 'v_w0[0]' vcode = '0.02 + fabs(cos(v_w0[0])) / 2' funcs = 'asin(%(v)s) + (acos(%(v)s) + (atan(%(v)s) + (log(%(v)s) + (exp(%(u)s) + (sin(%(u)s) + tan(%(v)s))))))' oneliner = funcs % {'u':ucode, 'v':vcode} # Oneliner version (ignoring reuse): expected_lines = ['double s[1];', 'Array<double> v_w0(1);', 'w0->eval(v_w0, x);', 's[0] = %s;' % oneliner, 'values[0] = s[0];'] #cppcode = format_dolfin_expression(classname="DebugExpression", shape=(), eval_body=expected_lines) #print '-'*100 #print cppcode #print '-'*100 #dolfin.plot(dolfin.Expression(cppcode=cppcode, mesh=mesh)) #dolfin.interactive() # Split version (handles reuse of v, no other reuse): expected_lines = ['double s[2];', 'Array<double> v_w0(1);', 'w0->eval(v_w0, x);', 's[0] = %s;' % (vcode,), 's[1] = %s;' % (funcs % {'u':ucode,'v':'s[0]'},), 'values[0] = s[1];'] # Define expected evaluation values: [(x,value), (x,value), ...] import math x, y = 0.6, 0.7 u = x*y v = abs(math.cos(u))/2 + 0.02 v0 = .52 expected0 = math.tan(v0) + 1 + math.log(v0) + math.atan(v0) + math.acos(v0) + math.asin(v0) expected = math.sin(u) + math.tan(v) + math.exp(u) + math.log(v) + math.atan(v) + math.acos(v) + math.asin(v) expected_values = [((0.0, 0.0), (expected0,)), ((x, y), (expected,)), ] # Execute all tests check_dolfin_expression_compilation(uexpr, expected_lines, expected_values, members={'w0':w0})