Example #1
0
    def postprocess_cauchy_stress(self, displacement):
        """
        Compute Cauchy stress from given numerical solution.

        Parameters
        ----------
        displacement: Function
            Computed numerical displacement
        """
        assert hasattr(self, "_elastic_ratio")
        assert hasattr(self, "_I")

        assert isinstance(displacement, dlfn.function.function.Function)
        # displacement gradient
        H = grad(displacement)
        # deformation gradient
        F = self._I + H
        # right Cauchy-Green tensor
        C = F.T * F
        # volume ratio
        J = dlfn.det(F)

        # dimensionless 2. Piola-Kirchhoff stress tensor (symbolic)
        S = self._I - J**(-self._elastic_ratio) * inv(C)

        # dimensionless Cauchy stress tensor (symbolic)
        sigma = (F * S * F.T) / J

        return sigma
Example #2
0
    def dw_int(self, u, v):
        """
        Construct internal energy.

        Parameters
        ----------
        u: Function

        v: TestFunction
        """
        # u Function (in the nonlinear case)
        assert isinstance(u, dlfn.function.function.Function)
        # v TestFunction
        assert isinstance(v, dlfn.function.argument.Argument)

        assert hasattr(self, "_elastic_ratio")
        assert hasattr(self, "_I")

        # deformation gradient
        F = self._I + grad(u)
        # right Cauchy-Green tensor
        C = F.T * F
        # volume ratio
        J = dlfn.det(F)

        # 2. Piola-Kirchhoff stress
        S = self._I - J**(-self._elastic_ratio) * inv(C)

        dE = dlfn.Constant(0.5) * (F.T * grad(v) + grad(v).T * F)

        return inner(S, dE)
Example #3
0
def evolEqG(C, Cv, Cv_step):
    Iv1 = tr(Cv)
    Ce = C * inv(Cv)
    CvinvC = inv(Cv) * C
    Ie1 = tr(Ce)

    # define etaK
    A2 = m1 * (Ie1 / 3)**(a1 - 1) + m2 * (Ie1 / 3)**(a2 - 1)

    G = (
        A2 /
        (etaInf + (eta0 - etaInf + K1 * (Iv1**bta1 - 3**bta1)) /
         (1 +
          (K2 *
           ((-(Ie1**2) / 6.0 + 1.0 / 2 * inner(CvinvC, Ce)) * A2**2))**bta2)) *
        (C - Ie1 / 3.0 * Cv))
    dl_interp(G, Cv_step)
Example #4
0
def freeEnergy(C, Cv):
    J = sqrt(det(C))
    I1 = tr(C)
    Ce = C * inv(Cv)
    Ie1 = tr(Ce)
    Je = J / sqrt(det(Cv))

    psiEq = (3**(1 - alph1) / (2.0 * alph1) * mu1 * (I1**alph1 - 3**alph1) +
             3**(1 - alph2) / (2.0 * alph2) * mu2 * (I1**alph2 - 3**alph2) -
             (mu1 + mu2) * ln(J) + mu_pr / 2 * (J - 1)**2)

    psiNeq = (3**(1 - a1) / (2.0 * a1) * m1 * (Ie1**a1 - 3**a1) + 3**(1 - a2) /
              (2.0 * a2) * m2 * (Ie1**a2 - 3**a2) - (m1 + m2) * ln(Je))

    return psiEq + psiNeq
    def dS_dFg(self, u_, p_, ivar, theta_old_, dt):

        theta_ = ivar["theta"]

        Cmat = self.S(u_, p_, ivar, tang=True)

        i, j, k, l, m, n = indices(6)

        # elastic material tangent (living in intermediate growth configuration)
        Cmat_e = dot(
            self.F_g(theta_),
            dot(self.F_g(theta_),
                dot(Cmat, dot(self.F_g(theta_).T,
                              self.F_g(theta_).T))))

        Fginv_outertop_S = as_tensor(
            inv(self.F_g(theta_))[i, k] * self.S(u_, p_, ivar=ivar)[j, l],
            (i, j, k, l))
        S_outerbot_Fginv = as_tensor(
            self.S(u_, p_, ivar=ivar)[i, l] * inv(self.F_g(theta_))[j, k],
            (i, j, k, l))
        Fginv_outertop_Fginv = as_tensor(
            inv(self.F_g(theta_))[i, k] * inv(self.F_g(theta_))[j, l],
            (i, j, k, l))
        FginvT_outertop_Ce = as_tensor(
            inv(self.F_g(theta_)).T[i, k] *
            self.C_e(self.kin.C(u_), theta_)[j, l], (i, j, k, l))
        Ce_outerbot_FginvT = as_tensor(
            self.C_e(self.kin.C(u_), theta_)[i, l] *
            inv(self.F_g(theta_)).T[j, k], (i, j, k, l))

        Cmat_e_with_C_e = 0.5 * as_tensor(
            Cmat_e[i, j, m, n] *
            (FginvT_outertop_Ce[m, n, k, l] + Ce_outerbot_FginvT[m, n, k, l]),
            (i, j, k, l))

        Fginv_outertop_Fginv_with_Cmat_e_with_C_e = as_tensor(
            Fginv_outertop_Fginv[i, j, m, n] * Cmat_e_with_C_e[m, n, k, l],
            (i, j, k, l))

        return -(Fginv_outertop_S +
                 S_outerbot_Fginv) - Fginv_outertop_Fginv_with_Cmat_e_with_C_e
Example #6
0
 def A(self):
     return self.F() * inv(self.G)
Example #7
0
 def e(self, u_):
     return 0.5*(self.I - inv(self.b(u_)))
Example #8
0
 def L(self, theta_, theta_old, dt):
     return dot((self.F_g(theta_) - self.F_g(theta_old))/dt, inv(self.F_g(theta_)))
Example #9
0
 def J_e(self, u_, theta_):
     return det(self.kin.F(u_)*inv(self.F_g(theta_)))
Example #10
0
 def C_e(self, C_, theta_):
     return inv(self.F_g(theta_)) * C_ * inv(self.F_g(theta_)).T
Example #11
0
# External forces
T = Coefficient(u_element)
p0 = Coefficient(p_element)

# Material parameters FIXME
rho = Constant(cell)
K = Constant(cell)
c00 = Constant(cell)
c11 = Constant(cell)
c22 = Constant(cell)

# Deformation gradient
I = Identity(d)
F = I + grad(u)
F = variable(F)
Finv = inv(F)
J = det(F)

# Left Cauchy-Green deformation tensor
B = F * F.T
I1_B = tr(B)
I2_B = (I1_B**2 - tr(B * B)) / 2
I3_B = J**2

# Right Cauchy-Green deformation tensor
C = F.T * F
I1_C = tr(C)
I2_C = (I1_C**2 - tr(C * C)) / 2
I3_C = J**2

# Green strain tensor