Example #1
0
 def errors(self, Rots, vs, ps, hat_Rots, hat_vs, hat_ps):
     errors = np.zeros((self.N, 9))
     for n in range(self.N):
         errors[n, :3] = SO3.log(Rots[n].T.dot(hat_Rots[n]))
     errors[:, 3:6] = vs - hat_vs
     errors[:, 6:9] = ps - hat_ps
     return errors
Example #2
0
 def errors(cls, Rots, hat_Rots):
     N = Rots.shape[0]
     errors = np.zeros((N, 3))
     # get true states and estimates, and orientation error
     for n in range(N):
         errors[n] = SO3.log(Rots[n].dot(hat_Rots[n].T))
     return errors
Example #3
0
    def phi_inv(cls, state, hat_state):
        """Inverse retraction.

        .. math::

          \\varphi^{-1}_{\\boldsymbol{\\hat{\\chi}}}\\left(\\boldsymbol{\\chi}
          \\right) = \\left( \\begin{matrix}
            \\log\\left(\\mathbf{C} \\mathbf{\\hat{C}}^T \\right)\\\\
            \\mathbf{v} - \\mathbf{\\hat{v}} \\\\
            \\mathbf{p} - \\mathbf{\\hat{p}} 
           \\end{matrix} \\right)

        The state is viewed as a element :math:`\\boldsymbol{\chi} \\in SO(3)
        \\times \\mathbb R^6`.

        Its corresponding retraction is :meth:`~ukfm.INERTIAL_NAVIGATION.phi`.

        :var state: state :math:`\\boldsymbol{\\chi}`.
        :var hat_state: noise-free state :math:`\\boldsymbol{\hat{\\chi}}`.
        """
        xi = np.hstack([
            SO3.log(state.Rot.dot(hat_state.Rot.T)), state.v - hat_state.v,
            state.p - hat_state.p
        ])
        return xi
Example #4
0
    def right_phi_inv(cls, state, hat_state):
        """Inverse retraction.

        .. math::
        
          \\varphi^{-1}_{\\boldsymbol{\\hat{\\chi}}}
          \\left(\\boldsymbol{\\chi}\\right) = \\left( \\begin{matrix}
            \\log\\left( \\boldsymbol{\\hat{\\chi}}^{-1} 
            \\boldsymbol{\\chi} \\right) \\\\
            \\mathbf{b}_g - \\mathbf{\\hat{b}}_g \\\\
            \\mathbf{b}_a - \\mathbf{\\hat{b}}_a
          \\end{matrix} \\right)

        The state is viewed as a element :math:`\\boldsymbol{\chi} \\in SE_2(3)
        \\times \\mathbb{R}^6` with right multiplication.

        Its corresponding retraction is :meth:`~ukfm.IMUGNSS.right_phi`.

        :var state: state :math:`\\boldsymbol{\\chi}`.
        :var hat_state: noise-free state :math:`\\boldsymbol{\hat{\\chi}}`.
        """
        dR = hat_state.Rot.dot(state.Rot.T)
        phi = SO3.log(dR)
        J = SO3.inv_left_jacobian(phi)
        dv = hat_state.v - dR * state.v
        dp = hat_state.p - dR * state.p
        xi = np.hstack([
            phi,
            J.dot(dv),
            J.dot(dp), hat_state.b_gyro - state.b_gyro,
            hat_state.b_acc - state.b_acc
        ])
        return xi
Example #5
0
    def phi_inv(cls, state, hat_state):
        """Inverse retraction.

        .. math::

          \\varphi^{-1}_{\\boldsymbol{\\hat{\\chi}}}
          \\left(\\boldsymbol{\\chi}\\right) = \\left( \\begin{matrix}
            \\log\\left(\\mathbf{C} \\mathbf{\\hat{C}}^T \\right)\\\\
            \\mathbf{v} - \\mathbf{\\hat{v}} \\\\
            \\mathbf{p} - \\mathbf{\\hat{p}} \\\\
            \\mathbf{b}_g - \\mathbf{\\hat{b}}_g \\\\
            \\mathbf{b}_a - \\mathbf{\\hat{b}}_a
           \\end{matrix} \\right)

        The state is viewed as a element :math:`\\boldsymbol{\chi} \\in SO(3)
        \\times \\mathbb R^{15}`.

        Its corresponding retraction is :meth:`~ukfm.IMUGNSS.phi`.

        :var state: state :math:`\\boldsymbol{\\chi}`.
        :var hat_state: noise-free state :math:`\\boldsymbol{\hat{\\chi}}`.
        """
        xi = np.hstack([
            SO3.log(hat_state.Rot.dot(state.Rot.T)), hat_state.v - state.v,
            hat_state.p - state.p, hat_state.b_gyro - state.b_gyro,
            hat_state.b_acc - state.b_acc
        ])
        return xi
Example #6
0
    def right_phi_inv(cls, state, hat_state):
        """Inverse retraction.

        .. math::

          \\varphi^{-1}_{\\boldsymbol{\\hat{\\chi}}}\\left(\\boldsymbol{\\chi}
          \\right) = \\log\\left(
            \\boldsymbol{\\hat{\\chi}}\\boldsymbol{\chi}^{-1} \\right)

        The state is viewed as a element :math:`\\boldsymbol{\chi} \\in SO(3)` 
        with right multiplication.

        Its corresponding retraction is :meth:`~ukfm.ATTITUDE.right_phi`.

        :var state: state :math:`\\boldsymbol{\\chi}`.
        :var hat_state: noise-free state :math:`\\boldsymbol{\hat{\\chi}}`.
        """
        xi = SO3.log(hat_state.Rot.dot(state.Rot.T))
        return xi
Example #7
0
    def phi_inv(cls, state, hat_state):
        """Inverse retraction.

        .. math::

          \\varphi^{-1}_{\\boldsymbol{\\hat{\\chi}}}\\left(\\boldsymbol{\\chi}
          \\right) = \\left( \\begin{matrix}
            \\log\\left(\\mathbf{\\hat{C}}^T \\mathbf{C}  \\right)\\\\
            \\mathbf{u} - \\mathbf{\\hat{u}}
           \\end{matrix} \\right)

        The state is viewed as a element :math:`\\boldsymbol{\chi} \\in SO(3) 
        \\times \\mathbb R^3`.

        Its corresponding retraction is :meth:`~ukfm.PENDULUM.phi`.

        :var state: state :math:`\\boldsymbol{\\chi}`.
        :var hat_state: noise-free state :math:`\\boldsymbol{\hat{\\chi}}`.
        """
        xi = np.hstack([SO3.log(hat_state.Rot.T.dot(state.Rot)),
                        state.u - hat_state.u])
        return xi