x_train = scaler.transform(x_train)
x_test = scaler.transform(x_test)

y = y * 2 - 1

print("x_train", x_train.shape, x_train.min(), x_train.max())
print("x_test", x_test.shape, x_test.min(), x_test.max())
print("y", y.shape, y.min(), y.max())

x_test = np.clip(x_test, a_min=-1, a_max=1)
print("x_test", x_test.shape, x_test.min(), x_test.max())

mlp = MLP(layer_size=[x_train.shape[1], 28, 28, 28, 1],
          regularization=1,
          output_shrink=0.1,
          output_range=[-1, 1],
          loss_type="hardmse")
"""
train 15 epoches, batch_size=1, SGD
"""
mlp.train(x_train,
          y,
          verbose=2,
          iteration_log=20000,
          rate_init=0.08,
          rate_decay=0.8,
          epoch_train=15,
          epoch_decay=1)
pred = mlp.predict(x_test)
pred = pred.reshape(-1)
scaler = MinMaxScaler(feature_range=(0, 1)).fit(
    np.concatenate((x_train_data, x_test_data), axis=0))

x_train_data = scaler.transform(x_train_data)
x_test_data = scaler.transform(x_test_data)

# In[ ]:

import ultimate
from ultimate.mlp import MLP

epoch_train = 1000

mlp = MLP(layer_size=[x_train_data.shape[1], 28, 28, 1],
          regularization=1,
          output_shrink=0.1,
          output_range=[0, 1],
          loss_type="hardmse")
mlp.train(x_train_data,
          p_train_data,
          iteration_log=20000,
          rate_init=0.08,
          rate_decay=0.8,
          epoch_train=epoch_train,
          epoch_decay=1)

# In[ ]:

predictions = np.round(mlp.predict(x_test_data).reshape(-1))

# In[ ]:
#X_train = np.load('X_train_hok_msm.npy')
#y = np.load('y_hok_msm.npy')

epoch_decay = 2
epoch_train = epoch_decay * 18
rate_init = 0.008
hidden_size = 32
verbose = 1
activation = 'a2m2l'
leaky = -0.001

mlp = MLP(
    layer_size=[X_train.shape[1], hidden_size, hidden_size, hidden_size, 1],
    activation=activation,
    leaky=leaky,
    bias_rate=[],
    regularization=1,
    importance_mul=0.0001,
    output_shrink=0.1,
    output_range=[-1, 1],
    loss_type="hardmse")
mlp.train(X_train,
          y,
          verbose=verbose,
          importance_out=True,
          iteration_log=20000,
          rate_init=rate_init,
          rate_decay=0.8,
          epoch_train=epoch_train,
          epoch_decay=epoch_decay)

X_test, _ = feature_engineering(False)
Example #4
0
    gc.collect()

    X_train['totalDistance'] = X_train['walkDistance'] + X_train[
        'rideDistance'] + X_train['swimDistance']
    X_test['totalDistance'] = X_test['walkDistance'] + X_test[
        'rideDistance'] + X_test['swimDistance']
    del X_train['walkDistance'], X_train['rideDistance'], X_train[
        'swimDistance']
    del X_test['walkDistance'], X_test['rideDistance'], X_test['swimDistance']
    gc.collect()
    scaler = preprocessing.MinMaxScaler(copy=False).fit(X_train)
    X_train = scaler.transform(X_train)
    X_test = scaler.transform(X_test)
    mlp_param = {
        'loss_type': 'mse',
        'layer_size': [X_train.shape[1], 8, 8, 8, 1],
        'output_range': [0, 1],
        'importance_out': True,
        'rate_init': 0.02,
        'epoch_train': 5,
        'epoch_decay': 10,
        'verbose': 1,
    }
    mlp = MLP(mlp_param)
    mlp.fit(X_train, y_train)
    print("feature importances:", mlp.feature_importances_)
    pred = mlp.predict(X_test)
    save_csv(pred, test)
    end_time = time.time()
    print('The total of time is', end_time - start_time)