def get_test_face(): # video = "http://*****:*****@192.168.43.1:8081/" video = 0 capture = cv2.VideoCapture(video) begin = False input = mkpath('tmp/input/') count = 0 while True: ret, frame = capture.read() cv2.imshow('video', frame) k = cv2.waitKey(1) if k == ord('q') or count > 100: break if k == ord('s'): begin = True if begin: str_time = str(time()).replace('.', '')[4:13] path = input + '/' + str_time + '.jpg' cv2.imwrite(path, frame) print(count, path) count += 1 capture.release() cv2.destroyAllWindows()
def merge(source, target): print("准备合成视频") last_source = find_last_path(source)[0] target_path = mkpath(target) images_to_video(last_source, target_path)
plt.rcParams['axes.unicode_minus'] = False fontpath = r"C:/Windows/Fonts/simfang.ttf" # 宋体字体文件 # 压缩图片, 基本不用了, 已废除 # compress() # 加载训练模型 known_face_encodings, known_face_names = load_face() # # Create arrays of known face encodings and their names # Initialize some variables face_locations = [] face_encodings = [] face_names = [] process_this_frame = True does, select = selection() if select == '3': ouput = mkpath('tmp/output/') begin = time() video_capture = cv2.VideoCapture(does) msc_start = time() while True: # Grab a single frame of video ret, frame = video_capture.read() # Resize frame of video to 1/4 size for faster face recognition processing try: small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) except Exception as result: print("The error is ", result) break # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses) rgb_small_frame = small_frame[:, :, ::-1]